I. WIGNER FUNCTION FOR ANHARMONIC OSCILLATOR

We consider Hamiltonian of a harmonic oscillator perturbed by a polynomial potential,
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H=35>. (P? +w2q?) + XY freodd dat a2, (1)
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where summation is performed over N-component multi-indexes {k;}. Here, we restrict
ourselves to cubic anharmonic terms with &y + ks + ... + kxy = 3, although this method could
be extended in principle to higher anharmonic corrections. In (1), A is a small perturbation
parameter.

The perturbed Wigner-function is expanded in powers of A,

P, @) = po(D. D) + Apr(B. D) + O(N?), (2)

where
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po(P, ¢) = exp (‘ i (%2 + wiq?)) (3)
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is the harmonic-oscillator Wigner function, and p;(p, ¢) is the first anharmonic correction to
be determined here.
To develop perturbation theory for the ground state wave function ¥(q), it is convenient

to rewrite the Scrodinger equation in terms of the function S(¢) = —Iln¥(q) [J:
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Without the second sum, Eq. (4) reduces to Hamilton - Jacobi equation for action of a
classical particle moving in a potential £ — V' (§). In such a quasiclassical limit, perturbation
theory for S(q) is easily developed []. More general quantum case which is considered here

is still solvable analytically, but resulting corrections have more monomial terms.

Let us expand quantities entering Eq. (4) in powers of A:

S(@) = So(@) + AS1(@) + O(N?), (5)
V(D) = Vo(@) + AVi(@) + O(N?), (6)
E = Ey+ AE; + O(\?). (7)
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Zero-order terms are:
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First-order correction to the potential, see Eq. (1), is
Vi(q) = j{: j}k }Q1 Q2 Q1 . Q§f- (11)

ki1+ko+...+kny=3
Expansions (5) are substituted into Eq. (4), and the left hand side is expanded in A. In

the first order in A\, Eq. (4) is equivalent to
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which is a linear equation in respect to a number E; and a function S, ().

Let us suppose that S;(q) is a polynomial

SU@) = Y spy i d’ar" a7 (13)
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Then Eq. (12) is equivalent to a set of linear equations in respect to coefficients sy}
and F ,
N
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where coefficients are supposed to be zero if one of indexes is negative.

Since inhomogeneous part of Eq. (12) , V1(¢) — E, is a third degree polynomial, it may

be shown that the solution is at most a third degree polynomial too,

S\ (@) = S Apaddd g+ S Buadidhrd g
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In (15) , we split (13) in three homogeneous polynomials of the first, the second, and the

third degrees. Now, recurrence relation (14) between polynomial coefficients reads

By20,0,....0y + Bo2,0.,..,0y T --- + B{oo,,.2) — £E1 =0 (16)
N
1
> [=kiwiAgy + 5(’% + 1) (ki + 2)Cliey ko, 2, k] = 0 (17)
i=1
N
i=1
N
— > kiwiCpy + fey =0 (19)
i=1

It follows from (19) that
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Cliy = (Z kw) fiy- (20)
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It follows from (18) that By, = 0, and from (16) that £y = 0. Finally, from (17)
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Since the perturbed wavefunction is ¥(q) = [1 — AS1(@)]exp (—So(q)) + O(N\?), then
p1(P, @) is a contribution to Wigner transform from integration of the function, —25; (7 +

i7/2) exp (—So (7 + 77/2)) exp (—So(¢ — 77/2)). Substituting there expansion (15), we finally

find
;m (P, q) = — > Ay Fiey o (01, 01) Fie s (D2, G2) - Fieyy o (P> )
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where
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Frw(p,q) = - /_oo dn(q +n/2)" exp (—5((1 +n/2)" - g(q - n/2) ) cos (pn) . (23)

It can be expressed analitically as
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Fu(p,q) = W= 2+ 2% exp _p_2 - qu
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Indexes higher than 3 don’t enter (22).

Final result of this section is given by Eq. (22), (24), (20), and (21).



