
I. WIGNER FUNCTION FOR ANHARMONIC OSCILLATOR

We consider Hamiltonian of a harmonic oscillator perturbed by a polynomial potential,
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where summation is performed over N -component multi-indexes fkig. Here, we restrict

ourselves to cubic anharmonic terms with k1+k2+ :::+kN = 3, although this method could

be extended in principle to higher anharmonic corrections. In (1), � is a small perturbation

parameter.

The perturbed Wigner-function is expanded in powers of �,
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is the harmonic-oscillator Wigner function, and �1(~p; ~q) is the �rst anharmonic correction to

be determined here.

To develop perturbation theory for the ground state wave function 	(~q), it is convenient

to rewrite the Scrodinger equation in terms of the function S(~q) = � ln	(~q) []:
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Without the second sum, Eq. (4) reduces to Hamilton - Jacobi equation for action of a

classical particle moving in a potential E�V (~q). In such a quasiclassical limit, perturbation

theory for S(~q) is easily developed []. More general quantum case which is considered here

is still solvable analytically, but resulting corrections have more monomial terms.

Let us expand quantities entering Eq. (4) in powers of �:

S(~q) = S0(~q) + �S1(~q) +O(�2); (5)

V (~q) = V0(~q) + �V1(~q) +O(�2); (6)

E = E0 + �E1 +O(�2): (7)
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Zero-order terms are:
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First-order correction to the potential, see Eq. (1), is
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Expansions (5) are substituted into Eq. (4), and the left hand side is expanded in �. In

the �rst order in �, Eq. (4) is equivalent to
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which is a linear equation in respect to a number E1 and a function S1(~q).

Let us suppose that S1(~q) is a polynomial
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Then Eq. (12) is equivalent to a set of linear equations in respect to coeÆcients sfkig

and E1 ,
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where coeÆcients are supposed to be zero if one of indexes is negative.

Since inhomogeneous part of Eq. (12) , V1(~q)�E1, is a third degree polynomial, it may

be shown that the solution is at most a third degree polynomial too,
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In (15) , we split (13) in three homogeneous polynomials of the �rst, the second, and the

third degrees. Now, recurrence relation (14) between polynomial coeÆcients reads

Bf2;0;0;:::;0g +Bf0;2;0;:::;0g + :::+Bf0;0;0;:::;2g � E1 = 0 (16)
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It follows from (19) that
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It follows from (18) that Bfkig = 0, and from (16) that E1 = 0. Finally, from (17)
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Since the perturbed wavefunction is 	(~q) = [1� �S1(~q)] exp (�S0(~q)) + O(�2), then

�1(~p; ~q) is a contribution to Wigner transform from integration of the function, �2S1(~q +
~�=2) exp (�S0(~q + ~�=2)) exp (�S0(~q � ~�=2)). Substituting there expansion (15), we �nally
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It can be expressed analitically as

F0;!(p; q) =
2p
�!

exp

 
�p2

!
� !q2

!
;

F1;!(p; q) =
2qp
�!

exp

 
�p2

!
� !q2

!
;

3



F2;!(p; q) =
! � 2p2 + 2!2q2p

�!!2
exp

 
�p2

!
� !q2

!
;

F3;!(p; q) =
q(3! � 6p2 + 2!2q2)p

�!!2
exp

 
�p2

!
� !q2

!
: (24)

Indexes higher than 3 don't enter (22).

Final result of this section is given by Eq. (22), (24), (20), and (21).
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