I. WIGNER FUNCTION FOR ANHARMONIC OSCILLATOR

We consider Hamiltonian of a harmonic oscillator perturbed by a polynomial potential,

$$
\begin{equation*}
H=\frac{1}{2} \sum_{i=1}^{N}\left(p_{i}^{2}+\omega_{i}^{2} q_{i}^{2}\right)+\lambda \sum_{\left\{k_{i}\right\}} f_{\left\{k_{i}\right\}} q_{1}^{k_{1}} q_{2}^{k_{2}} q_{1}^{k_{1}} \ldots q_{N}^{k_{2}} \tag{1}
\end{equation*}
$$

where summation is performed over N-component multi-indexes $\left\{k_{i}\right\}$. Here, we restrict ourselves to cubic anharmonic terms with $k_{1}+k_{2}+\ldots+k_{N}=3$, although this method could be extended in principle to higher anharmonic corrections. In (1), λ is a small perturbation parameter.

The perturbed Wigner-function is expanded in powers of λ,

$$
\begin{equation*}
\rho(\vec{p}, \vec{q})=\rho_{0}(\vec{p}, \vec{q})+\lambda \rho_{1}(\vec{p}, \vec{q})+O\left(\lambda^{2}\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho_{0}(\vec{p}, \vec{q})=\exp \left(-\sum_{i=1}^{N}\left(\frac{p_{i}^{2}}{\omega_{i}}+\omega_{i} q_{i}^{2}\right)\right) \tag{3}
\end{equation*}
$$

is the harmonic-oscillator Wigner function, and $\rho_{1}(\vec{p}, \vec{q})$ is the first anharmonic correction to be determined here.

To develop perturbation theory for the ground state wave function $\Psi(\vec{q})$, it is convenient to rewrite the Scrodinger equation in terms of the function $S(\vec{q})=-\ln \Psi(\vec{q})$ []:

$$
\begin{equation*}
-\frac{1}{2} \sum_{i=1}^{N}\left(\frac{\partial S}{\partial q_{i}}\right)^{2}+\frac{1}{2} \sum_{i=1}^{N} \frac{\partial^{2} S}{\partial q_{i}^{2}}+V(\vec{q})-E=0 \tag{4}
\end{equation*}
$$

Without the second sum, Eq. (4) reduces to Hamilton - Jacobi equation for action of a classical particle moving in a potential $E-V(\vec{q})$. In such a quasiclassical limit, perturbation theory for $S(\vec{q})$ is easily developed []. More general quantum case which is considered here is still solvable analytically, but resulting corrections have more monomial terms.

Let us expand quantities entering Eq. (4) in powers of λ :

$$
\begin{align*}
S(\vec{q}) & =S_{0}(\vec{q})+\lambda S_{1}(\vec{q})+O\left(\lambda^{2}\right), \tag{5}\\
V(\vec{q}) & =V_{0}(\vec{q})+\lambda V_{1}(\vec{q})+O\left(\lambda^{2}\right), \tag{6}\\
E & =E_{0}+\lambda E_{1}+O\left(\lambda^{2}\right) . \tag{7}
\end{align*}
$$

Zero-order terms are:

$$
\begin{align*}
S_{0}(\vec{q}) & =\frac{1}{2} \sum_{i=1}^{N} \omega_{i} q_{i}^{2} \tag{8}\\
V_{0}(\vec{q}) & =\frac{1}{2} \sum_{i=1}^{N} \omega_{i}^{2} q_{i}^{2} \tag{9}\\
E_{0} & =\frac{1}{2} \sum_{i=1}^{N} \omega_{i} . \tag{10}
\end{align*}
$$

First-order correction to the potential, see Eq. (1), is

$$
\begin{equation*}
V_{1}(\vec{q})=\sum_{k_{1}+k_{2}+\ldots+k_{N}=3} f_{\left\{k_{i}\right\}} q_{1}^{k_{1}} q_{2}^{k_{2}} q_{1}^{k_{1}} \ldots q_{N}^{k_{2}} \tag{11}
\end{equation*}
$$

Expansions (5) are substituted into Eq. (4), and the left hand side is expanded in λ. In the first order in λ, Eq. (4) is equivalent to

$$
\begin{equation*}
-\sum_{i=1}^{N} \frac{\partial S_{0}}{\partial q_{i}} \frac{\partial S_{1}}{\partial q_{i}}+\frac{1}{2} \sum_{i=1}^{N} \frac{\partial^{2} S_{1}}{\partial q_{i}^{2}}+V_{1}(\vec{q})-E_{1}=0 \tag{12}
\end{equation*}
$$

which is a linear equation in respect to a number E_{1} and a function $S_{1}(\vec{q})$.
Let us suppose that $S_{1}(\vec{q})$ is a polynomial

$$
\begin{equation*}
S_{1}(\vec{q})=\sum_{\left\{k_{i}\right\}} s_{\left\{k_{i}\right\}} q_{1}^{k_{1}} q_{2}^{k_{2}} q_{1}^{k_{1}} \ldots q_{N}^{k_{2}} \tag{13}
\end{equation*}
$$

Then Eq. (12) is equivalent to a set of linear equations in respect to coefficients $s_{\left\{k_{i}\right\}}$ and E_{1},

$$
\begin{equation*}
\sum_{i=1}^{N}\left[-k_{i} \omega_{i} s_{\left\{k_{i}\right\}}+\frac{1}{2}\left(k_{i}+1\right)\left(k_{i}+2\right) s_{\left\{k_{1}, k_{2}, \ldots, k_{i}+2, \ldots, k_{N}\right\}}\right]+f_{\left\{k_{i}\right\}}-\delta\left(\left\{k_{i}\right\},\{0\}\right) E_{1}=0 \tag{14}
\end{equation*}
$$

where coefficients are supposed to be zero if one of indexes is negative.
Since inhomogeneous part of Eq. (12) , $V_{1}(\vec{q})-E_{1}$, is a third degree polynomial, it may be shown that the solution is at most a third degree polynomial too,

$$
\begin{align*}
S_{1}(\vec{q})= & \sum_{k_{1}+k_{2}+\ldots+k_{N}=1} A_{\left\{k_{i}\right\}} q_{1}^{k_{1}} q_{2}^{k_{2}} q_{1}^{k_{1}} \ldots q_{N}^{k_{2}}+\sum_{k_{1}+k_{2}+\ldots+k_{N}=2} B_{\left\{k_{i}\right\}} q_{1}^{k_{1}} q_{2}^{k_{2}} q_{1}^{k_{1}} \ldots q_{N}^{k_{2}} \\
& +\sum_{k_{1}+k_{2}+\ldots+k_{N}=3} C_{\left\{k_{i}\right\}} q_{1}^{k_{1}} q_{2}^{k_{2}} q_{1}^{k_{1}} \ldots q_{N}^{k_{2}} . \tag{15}
\end{align*}
$$

In (15), we split (13) in three homogeneous polynomials of the first, the second, and the third degrees. Now, recurrence relation (14) between polynomial coefficients reads

$$
\begin{align*}
& B_{\{2,0,0, \ldots, 0\}}+B_{\{0,2,0, \ldots, 0\}}+\ldots+B_{\{0,0,0, \ldots, 2\}}-E_{1}=0 \tag{16}\\
& \sum_{i=1}^{N}\left[-k_{i} \omega_{i} A_{\left\{k_{i}\right\}}+\frac{1}{2}\left(k_{i}+1\right)\left(k_{i}+2\right) C_{\left\{k_{1}, k_{2}, \ldots, k_{i}+2, \ldots, k_{N}\right\}}\right]=0 \tag{17}\\
& \sum_{i=1}^{N} k_{i} \omega_{i} B_{\left\{k_{i}\right\}}=0 \tag{18}\\
&-\sum_{i=1}^{N} k_{i} \omega_{i} C_{\left\{k_{i}\right\}}+f_{\left\{k_{i}\right\}}=0 \tag{19}
\end{align*}
$$

It follows from (19) that

$$
\begin{equation*}
C_{\left\{k_{i}\right\}}=\left(\sum_{i=1}^{N} k_{i} \omega_{i}\right)^{-1} f_{\left\{k_{i}\right\}} \tag{20}
\end{equation*}
$$

It follows from (18) that $B_{\left\{k_{i}\right\}}=0$, and from (16) that $E_{1}=0$. Finally, from (17)

$$
\begin{equation*}
A_{\left\{k_{i}\right\}}=\frac{1}{2}\left(\sum_{i=1}^{N} k_{i} \omega_{i}\right)^{-1} \sum_{i=1}^{N}\left(k_{i}+1\right)\left(k_{i}+2\right) C_{\left\{k_{1}, k_{2}, \ldots, k_{i}+2, \ldots, k_{N}\right\}} . \tag{21}
\end{equation*}
$$

Since the perturbed wavefunction is $\Psi(\vec{q})=\left[1-\lambda S_{1}(\vec{q})\right] \exp \left(-S_{0}(\vec{q})\right)+O\left(\lambda^{2}\right)$, then $\rho_{1}(\vec{p}, \vec{q})$ is a contribution to Wigner transform from integration of the function, $-2 S_{1}(\vec{q}+$ $\vec{\eta} / 2) \exp \left(-S_{0}(\vec{q}+\vec{\eta} / 2)\right) \exp \left(-S_{0}(\vec{q}-\vec{\eta} / 2)\right)$. Substituting there expansion (15), we finally find

$$
\begin{align*}
\rho_{1}(\vec{p}, \vec{q})= & -\sum_{k_{1}+k_{2}+\ldots+k_{N}=1} A_{\left\{k_{i}\right\}} F_{k_{1}, \omega_{1}}\left(p_{1}, q_{1}\right) F_{k_{2}, \omega_{2}}\left(p_{2}, q_{2}\right) \ldots F_{k_{N}, \omega_{N}}\left(p_{N}, q_{N}\right) \tag{22}\\
& -\sum_{k_{1}+k_{2}+\ldots+k_{N}=3} C_{\left\{k_{i}\right\}} F_{k_{1}, \omega_{1}}\left(p_{1}, q_{1}\right) F_{k_{2}, \omega_{2}}\left(p_{2}, q_{2}\right) \ldots F_{k_{N}, \omega_{N}}\left(p_{N}, q_{N}\right) .
\end{align*}
$$

where

$$
\begin{equation*}
F_{k, \omega}(p, q)=\frac{1}{\pi} \int_{-\infty}^{\infty} d \eta(q+\eta / 2)^{k} \exp \left(-\frac{\omega}{2}(q+\eta / 2)^{2}-\frac{\omega}{2}(q-\eta / 2)^{2}\right) \cos (p \eta) \tag{23}
\end{equation*}
$$

It can be expressed analitically as

$$
\begin{aligned}
& F_{0, \omega}(p, q)=\frac{2}{\sqrt{\pi \omega}} \exp \left(-\frac{p^{2}}{\omega}-\omega q^{2}\right) \\
& F_{1, \omega}(p, q)=\frac{2 q}{\sqrt{\pi \omega}} \exp \left(-\frac{p^{2}}{\omega}-\omega q^{2}\right)
\end{aligned}
$$

$$
\begin{align*}
& F_{2, \omega}(p, q)=\frac{\omega-2 p^{2}+2 \omega^{2} q^{2}}{\sqrt{\pi \omega} \omega^{2}} \exp \left(-\frac{p^{2}}{\omega}-\omega q^{2}\right), \\
& F_{3, \omega}(p, q)=\frac{q\left(3 \omega-6 p^{2}+2 \omega^{2} q^{2}\right)}{\sqrt{\pi \omega} \omega^{2}} \exp \left(-\frac{p^{2}}{\omega}-\omega q^{2}\right) . \tag{24}
\end{align*}
$$

Indexes higher than 3 don't enter (22).
Final result of this section is given by Eq. (22), (24), (20), and (21).

