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Harmonic oscillator approximation 

Equations to be solved 

We are finding a minimum of the function 

function)ln(Wigner),...,,,,...,,( 2
1

2121 −=NN QQQPPPW  

under the restriction 

EQQQPPPH NN =),...,,,,...,,( 2121  

where 
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Scaling 

To decrease number of parameters, let us perform scaling  

 

( )
( )

)1(2)0(

)0()1()0()1(

)0()0(

/

/

iii

iii

iiiii

iiiii

mPp

QQmq

QQmq

ωωω

ω

ω

=

=

−=

−=

 (2) 

and rewrite (1) as 
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Points of extremum 

Extremum points are found from the equation HW ∇=∇
&&

λ  that is equivalent to a set of 

equations 
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The second equation of (4) is equivalent to 
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Two kinds of extrema 

If 01 ≠p  then 
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Coordinates (5) correspond to real momentum 1p  if Eq
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If the coordinates are enumerated so that )1()1(
2

)1(
1 ... Nωωω ≥≥≥  then no other similar extremum 

for 0≠kp  where Nk ,...,3,2=  can be a minimum of W  because there exist a point with the same 

coordinates and interchanged momemta with less W .  

Extremum points with all zero momenta can be found by solving an equation for λ , 
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and then finding coordinates using eq. (4a). 

Choosing minimum of W  

Firstly, we choose an extremum with minimum W  among the second kind of extrema (zero-

momenta). If an extremum of the first kind (5) exists then its W  should be compared with the 

second-kind minimum to make a proper choice of the global minimum. Consider here the first step 

in detail. 

Let us define functions 
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The problem of finding of the second-kind minimum reduces to finding a root of the equation 

EF =)(λ  with minimum of )(λU  that is equivalent to minimum of the function 

)(/)()( λλλ FUR = . In some regions, this function can be estimated as 
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For illustration, let us plot graphs of the functions taking for example },,,1{}{ 4
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3
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2
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For example at 50=E  the equation EF =)(λ  has four real roots with minimum of )(λR  (and 

hence )(λUW = ) for the smallest root 95.0≈ . 

Singularities of the function inverse to )(λF , i.e. λ  as a function of E  are determined from the 

equation 0)( =λ
λ

F
d

d
. In a particular case of 2=N , there is one real singularity 
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and a pair of complex-conjugate singularities 
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For arbitrary N , there is no closed-form formula. We can estimate minima and generally, complex 

stationary points of the function )(λF  by assuming that they appear as a result of interference of 

some couple of neighbor poles, corresponding to a couple of terms in the sum (9). For example, for 

the above example with 4=N , the second local minimum of )(λF  at 18788.2=λ  appears as a 

result of juxtaposition of two terms, the second and the third, and can be estimated using eq. (9) for 

the second and the third coordinates and disregarding another coordinates. It gives 18773.20 =λ  

which is very close to the exact position of the minimum (at 18788.2=λ ). The following table lists 

all singularities found by formula (9) in comparison with exact singularities. 

Poles in (7) taken into account 1, 2 2, 3 3, 4 

Singularities, eq. (9) 
1.5 
1.5± 0.866 i 

2.1877 
1.9244± 0.2434 i 

3.8123 
4.0756± 0.2434 i 

Exact singularities 
1.3566 
0.8556± 0.4759 i 

2.1879 
1.9261± 0.2436 i 

3.8123 
4.0756± 0.2432 i 

Our assumption gives accurate predictions for almost all singularities (except only one pair of 

singularities). 

Large E behavior 

At large energies, there are N  pairs of extremum points, 
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where Ni ,...,2,1= , ij ≠ , and E2/1±=ε . As an illustration, in our previous example, there are 

four pairs of roots of the equation EF =)(λ  at 400=E , and the smallest root corresponds to the 

minimum of W : 
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For 2=N , radius of convergence of these expansions is distance from the origin to the most 

distant singularity, 
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2,1,0

* n
n

FE λ
=

=  (11) 

 where nλ  are given by formulas (9). For arbitrary N , it can be estimated as ),(
*

1||
* max ji

ji
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where ),(
*

jiE  is the radius of convergence for 2=N  with only two non-zero adjacent terms in (7) 

with indexes i  and j  (here, the frequencies are arranged in ascending or descending order). 
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Small E behavior 

At small energies, there is a pair of real extrema at 
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 and 0/WE±=µ   (negative sign corresponds to minimum of W ). There are 

also 22 −N  complex stationary points. 

For the above example, appearance of two roots of the equation EF =)(λ  for small 3=E  is 

illustrated on the figure below (the lower graph of the function )(λR  shows that the smallest root 

has minimum of W ): 
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Almost classically allowed transition (small W) 

If ∑
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10 ),...,,( , then the minimum is described by the following 

formulas. 
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where 00 /)( EEE −=δ   and ω  was defined above. 

Perturbation theory for an anharmonic Hamiltonian 

Formal perturbation theory for general anharmonicity 

To find stationary points, it is necessary to solve simultaneous equations 
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HW

=
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&&

λ . (14) 

In this section, we consider an anharmonic Hamiltonian in the form )1()0( HHH ε+=  where ε  is a 

small parameter, )0(H  and W  are quadratic functions of momenta and coordinates given by 

formulas (3), and )1(H  is some anharmonicity which is typically 

...
24
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++ ∑∑ lkj
lkji

iijklkj
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iijk qqqqgqqqf . Here, we expand unknown momenta, coordinates, and λ  

into power series 
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The first-order corrections to harmonic approximation will be found here formally for a general 

anharmonicity. 

For shortness, momenta and coordinates will be unified to a single N2 -component set 

),...,,,,...,,(),...,,( 2121221 NNN qqqpppXXX = , so eq. (14) are rewritten as 
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Now, both sides of eq. (16) will be expanded in powers of ε . 

In the second equation of (16),  
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For shortness, let us write everywhere for some function )(XA , AXA =)( )0( , i

i

AXA
X

=
∂
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)( )0( , 

ji
ji

AXA
XX ,

)0(
2
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∂

. The second equation of (16) now reads 

 EHXHH
i

ii =+



 ++ ∑ ...)1()1()0()0( ε . (18) 

In zero order, it is equivalent to unperturbed equation EH =)0( , and in the first order, 

 0)1()1()0( =+∑ HXH
i

ii . (19) 

In a similar manner, the first equation of (16) is expanded as 
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In zero order, it is equivalent to unperturbed equation )0()0(
ii HW λ= , and in the first order, 
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Solution of (21) is 
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jjiji HHGX )1()0()0()1()1( λλ , (22) 

where }{ ijG  is a matrix reciprocal to { })0(
,

)0(
, jiji HW λ− . By substituting eq. (22) into eq. (19), we 

arrive to 
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From eq. (23), )1(λ  is determined as 
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Summary of results for an anharmonic perturbation 

For general anharmonic correction )1(H , the first anharmonic correction to coordinates of 

points of launch is determined as follows. At the first step, unperturbed coordinates )0(
iX  together 

with )0(λ  are calculated according to the preceding chapter. Then, the matrix of the second 

derivatives { })0(
,

)0(
, jiji HW λ−  at the point )0(XX =  is calculated, and its inverse matrix }{ ijG  is 
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found. After that, the correction )1(λ  is calculated by formula (24). Finally, corrections )1(
iX  are 

calculated by formula (22). 

Perturbation of harmonic potential by a cubic polynomial 

Matrixes of the second derivatives of H  and W  (see formulas (3)) are diagonal, ijijH δ=)0( , 

and ij
i

ijW δ
ω
1=  where Nji ,...,1, =  (we disregard here derivatives over momenta because we shall 

consider perturbation independent of momenta, so all matrixes have size NxN instead of 2Nx2N). 

For the case when the perturbation term contains only coordinates and has a form of a general 

cubic polynomial, 
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the first derivatives of H  are 
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Eq. (24) and (22) are considerably simplified in our case, 
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where 
)0(1 λω

ω

i

i
ig

−
=  are diagonal matrix elements of the matrix G  from the previous section, and 

)1(
iq  stands for the coordinate correction, not the displacement. 
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Application to benzene molecule 

Physical parameters 

We choose a sample molecular system to test above approximations and to estimate their 

applicability range. Let us consider two-mode system with the following physical parameters 
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(these data are for 01 SS →  transition in benzene molecule, with coordinates 1 and 2 corresponding 

to CC and CH bonds). Scaled parameters are 
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in atomic units. Note that disregarding the displacements (that is justified for large energies), we 

have ω/EW =  where ω  is a maximum of four frequencies from (29), i.e. 2ω . It means that 

momenta and the first coordinate are zero, and only 2q  is non-zero. For small displacements (or 

large energy), solution is given by equations (10) with 2=i  and E2/1−=ε . The expansion 

converges when energy is larger than 0.0015. Sum of three terms of the expansion (Eq. (10)) for W  

is shown on the following figure, together with the exact W . 
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There, it is shown also the second stationary point above the minimum. For the physical energy 

177.0=E , the large-energy approximation is very accurate. 

As an example of the system with four variables, we considered nonsymmetrical vibrational 

modes g2e  with frequencies 0ω  608, 3056, 1599, 1178 and 1ω  522, 3077, 1454, 1148 1cm − . Since 

all displacements for that modes are zero, the solution is simply given by the first term of the large-

energy approximation. We considered a hypothetical system with the same frequencies and four 

equal non-zero displacements 0.0319, the same as )1(
1q  from the first example. We found that large-

energy expansion converges for this system for energies larger than 0.032, so that physical energy 

~0.1 lies within the range of applicability of this approximation. 

These two examples show that the radius of applicability is of order of 0.01 for typical 

molecules. 

Appendix. Proof of a mathematical inequality 

Let us prove that if )()( 21 λλ FF =  and 21 λλ <  then )()( 21 λλ UU < , where functions )(λF  

and )(λU  are defined by Eq. (7) (as a consequence of this inequality, the root of the equation 

EF =)(λ  with minimum of )(λU  is the minimal root). 
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Introducing symmetrical variables 21 λλ +=s  and 21λλ=t , we rewrite increments of the 

functions as 
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= . Multiplying the equation 0)()( 12 =− λλ FF  by 2/s , we arrive to 

an equation 
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Since  04)( 22
21 >−=− tsλλ , then ts 22/2 > , and ts ii ωω 22/2 −<− . Substituting the latter 

inequality into Eq. (A2) and taking into account that 0>iA , we find 
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Comparing (A3) with the second equation in (A1) we conclude that 0)()( 12 >− λλ UU  (end of the 

proof). 

 


