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Harmonic oscillator approximation

Equationsto be solved

We are finding a minimum of the function

W(R,P,,...Py,Q,,Q,,....Qy) = —2In(Wigner function)

under the restriction
H(Pl,P2 ..... Pui Qi Qs QN):E

where
1y P? O
=18 B muor(o )
E 0 )
W = 1 N ] Pi2 w(l) (Q Q(l) )2 |:| (
Scaling
To decrease number of parameters, let us perform scaling
q = \/ﬁ wfo) (Q| _Qi(O))
q® = \/ﬁ w© (Q-(l) _ Q_(O))
| | | | (2)

pi:F?/\/ﬁ

2
W =0

and rewrite (1) as
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H :% S (pi2+q|2)
w 1 S Epi) + (q' -a’ )2 B o
2 R, w, &

Points of extremum

Extremum points are found from the equation 0OW =ACH that is equivalent to a set of

eguations
EM:AqI (i=12,...,N). 4)
w
The second equation of (4) isequivalent to
g = ﬁqf” . (43)

N N
Notethatdﬂzz dei+6qui :/\Z Hdpi+aqui :)\dH .
de  &op dE 0q dE 4 0p. dE  dg, dE dE

Two kinds of extrema
If p, #0 then
A=1w®,

1 ) .
=5 (=12..N)
i 1

G ©

N
Coordinates (5) correspond to real momentum p, if %Z q’ <E.
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If the coordinates are enumerated so that w® > w{’ >...2 @ then no other similar extremum
for p, #0 where k=23,...,N can be aminimum of W because there exist a point with the same

coordinates and interchanged momemtawith less W .

Extremum points with all zero momenta can be found by solving an equation for A,

N ® £
1 qi -E (6)
2&M0-Aw,

and then finding coordinates using eg. (4a).
Choosing minimum of W

Firstly, we choose an extremum with minimum W among the second kind of extrema (zero-
momenta). If an extremum of the first kind (5) exists then its W should be compared with the
second-kind minimum to make a proper choice of the global minimum. Consider here the first step
in detail.

Let us define functions

_1 N qi(l)

-3 %
A SH o |

oo 7 S

The problem of finding of the second-kind minimum reduces to finding a root of the equation

)

F(A)=E with minimum of U(A) that is equivdent to minimum of the function

R(A) =U(A)/F(A). In someregions, this function can be estimated as

OwA®>, A -0
RA) ~Hw?h A -wt (i=12..N). ®)

072, A - oo
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where @ = i q.(l)zw. / i q,(l)2 and ™ = i q.‘l)za).‘l / i q.(l)2 .
For illustration, let us plot graphs of the functions taking for example {w} ={1%,%,4} and

{a%} ={13.33:

F(A)

iy

R(A)

1 2 3 4 5
For example at E =50 the equation F(A) = E hasfour real roots with minimum of R(A) (and
hence W =U (A)) for the smallest root = 0.95.

Singularities of the function inverseto F(A),i.e. A asafunction of E are determined from the

equation d%\F(/\) =0. Inaparticular caseof N =2, thereisonerea singularity

1/3,,(1)2/3 1/3,(1)2/3
A = w; Oy T, "(q; (9)
0 1/3 023 1/3,.(1)2/3
LW, 0 w,w, "q;

and apair of complex-conjugate singularities
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1/3,.(1)2/3

+2im/3, \1/3(1)2/3

A —_ wl ql +e_ (‘)2 q2
12 7 2/3 ; 2/3 "
1/3 &) +2i71/3 1/3 (1)
w; "w,q; t€ w,w, "q;

(9a)

For arbitrary N , there is no closed-form formula. We can estimate minima and generally, complex

stationary points of the function F(A) by assuming that they appear as a result of interference of

some couple of neighbor poles, corresponding to a couple of terms in the sum (9). For example, for

the above example with N =4, the second local minimum of F(A) a A =2.18788 appears as a

result of juxtaposition of two terms, the second and the third, and can be estimated using eq. (9) for

the second and the third coordinates and disregarding another coordinates. It gives A, = 2.18773

which is very close to the exact position of the minimum (at A = 2.18788 ). The following table lists

all singularities found by formula (9) in comparison with exact singularities.

Polesin (7) taken into account 1,2 2,3 3,4
Singularities, &g, (@ | -3 21877 3.8123
9 » €G- 15+ 0.866 i 1.9244+ 0.2434 i 4.0756+ 0.2434 |
Exect Snaularities 1.3566 21879 3.8123
9 0.8556+ 0.4759 | 1.9261+ 0.2436 i 40756+ 0.2432 i

Our assumption gives accurate predictions for almost all singularities (except only one pair of

singularities).

L arge E behavior

At large energies, thereare N pairs of extremum points,
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15 q%w, [ %
A=—H+q¥ed+} 199 el o),
W, E = B"’i_wJH %
®
o =-Leys B FL Loy
e - , (10)
wa®  wow.a®q®
qj — |qJ [ Jql qu 5+O(€2)
wl _wj (w| - J)
® ®?2 M2
W = 1 > +q| +1Egi _ qJ H+O($)
2we? we 20w Gw-w U

! U

where i =12,...,N, j#i,and € =+1/~+2E . As an illustration, in our previous example, there are
four pairs of roots of the equation F(A) =E a E =400, and the smallest root corresponds to the

minimum of W :

F()
500

400f- — — —
300

200

100 /—j
1 2 3 4 5

For N =2, radius of convergence of these expansions is distance from the origin to the most

A

distant singularity,

E. = max|F ) (11)

n=0,1,2
where A, are given by formulas (9). For arbitrary N, it can be estimated as E. = max E"”
fi~jl=L
where EX"? is the radius of convergence for N =2 with only two non-zero adjacent terms in (7)

withindexes i and j (here, the frequencies are arranged in ascending or descending order).
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Small E behavior

At small energies, thereisapair of real extrema at

A=1/pu
&

T Sy , (12)
)

N
W =W, +'UZ qi(l)Z/wiz

N q@2
where W, = % Z qIT and y =+,/E/W, (negativesign correspondsto minimum of W). Thereare

also 2N -2 complex stationary points.
For the above example, appearance of two roots of the equation F(A) = E for smal E=3 is
illustrated on the figure below (the lower graph of the function R(A) shows that the smallest root

has minimum of W ):

F(2)
50

40
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Almost classically allowed transition (small W)

N
If E - E,=V(®,qP,...q0) = Zqi(l)z, then the minimum is described by the following

formulas.
A=),
q =q®H+2sh (13)
0 w [
W:Eéz
20

where 6 = (E-E,;)/ E, and @ was defined above.

Perturbation theory for an anharmonic Hamiltonian

Formal perturbation theory for general anhar monicity

To find stationary points, it is necessary to solve simultaneous equations

OW = ADH (14)
H=E

In this section, we consider an anharmonic Hamiltonian in the foom H = H© +eH® where ¢ isa
small parameter, H® and W are quadratic functions of momenta and coordinates given by

formulas  (3), and H® is some  anharmonicity  which is  typicaly

% I e JYeN +2—14 06 9d;0,9, +.... Here, we expand unknown momenta, coordinates, and A
i), i,k

into power series
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p’ - D’(O) +$p'(1) + ..
G=G° +&g® +.... (15)
A=2AC+a® +

The first-order corrections to harmonic approximation will be found here formally for a general
anharmonicity.
For shortness, momenta and coordinates will be unified to a single 2N -component set

(X1 Xg0ees Xon) = (Pry Py Py 2 01, G0, 0y ) » SO €0, (14) are rewvritten as

) 0

—W(X)=A—H(X), i=12,...,2N
X, ) X, (X). 1=1 . (16)
H(X)=E
Now, both sides of eg. (16) will be expanded in powers of €.
In the second equation of (16),
H(X)=HO(X® +eX® + ) +eHP(XP +eX® +. ) +..=
HOXO) 40y -2 HO(XO)XO + HO(XO) . o
~ 0X; I 0
For shortness, let us write everywhere for some function A(X), A(X@) = A, 6% AXO)=A,
62
A(X®) = A ;. The second equation of (16) now reads
0X,0X | '
H© +£§ HOX® +H® E+...: E. (18)
In zero order, it is equivalent to unperturbed equation H© = E, and in the first order,
> HOXP+H® =0. (19)

In asimilar manner, the first equation of (16) is expanded as
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(] ]
VVi + ‘E‘Z\/\/iyj XJ@ + .= 2@ H i(0) + E%\(O) Z Hi(,(}) X J(l) + 2@ H i(0) + 2@ Hi(l) E (20)
J J

In zero order, it is equivalent to unperturbed equation W, = A®H © and in the first order,

3 6’\/.1 ~AOHO )X O = JOHO 4 JOHO, (21)
J

Solution of (21) is
X® =5 GAOH® +\OH®), (22)
J
where {G,} is a matrix reciprocal to {\/\/,J —/\<°)Hi<fj)} . By substituting eq. (22) into eq. (19), we
arriveto

S GHO (A@H © 4 JOH J(1))+ H® =0, (23)

U]
1]
From eqg. (23), A% is determined as

H o 4 /\(0) Z Gij H i(0) H J(1)
A(l) o )

S G, HOHO G
ijrli j

1)

Summary of resultsfor an anharmonic perturbation

For general anharmonic correction H®, the first anharmonic correction to coordinates of

points of launch is determined as follows. At the first step, unperturbed coordinates X together

with A are calculated according to the preceding chapter. Then, the matrix of the second
derivatives {\/\/IJ —A(O)Hif‘})} at the point X = X is calculated, and its inverse matrix {G,} is
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found. After that, the correction A® is calculated by formula (24). Finaly, corrections X are

calculated by formula (22).
Perturbation of harmonic potential by a cubic polynomial

Matrixes of the second derivatives of H and W (see formulas (3)) are diagonal, H” =4, ,

1
.

and W, =—¢4,; wherei, j=1..,N (we disregard here derivatives over momenta because we shall

consider perturbation independent of momenta, so all matrixes have size NxN instead of 2Nx2N).
For the case when the perturbation term contains only coordinates and has a form of a general

cubic polynomial,

1
H® =gij f a0, » (25)

thefirst derivativesof H are
H® -1 E f. 0.0 (26)
i 2i J ijk“1j Mk *

Eq. (24) and (22) are considerably smplified in our case,
> (+30% )i, a%a” gl
Vs

Z 9,9 _ @7

1
a” =g, Eﬂ”qf") #5273 fuaal” %
I

where g, = . are diagona matrix elements of the matrix G from the previous section, and
' 1-wA©

a0 =L
6

q" stands for the coordinate correction, not the displacement.
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Application to benzene molecule

Physical parameters

We choose a sample molecular system to test above approximations and to estimate their

applicability range. Let us consider two-mode system with the following physical parameters

Qi =1.084 A m, =11016 m,
m, =1836m,

© =1.397 A
O =1.432 A
QY =1.086 A

w® =1008cm™
w!” =3191cm™
w® =923cm™

w’ =3130cm™

(28)

(these dataarefor S, —» S, transition in benzene molecule, with coordinates 1 and 2 corresponding

to CC and CH bonds). Scaled parameters are

w® =0.0042
g® =0.0319 !’ =0.0143 29)
q® =0.0024  , =0.0050 '

w, =0.0148

in atomic units. Note that disregarding the displacements (that is justified for large energies), we

have W = E/w where w is a maximum of four frequencies from (29), i.e. w,. It means that

momenta and the first coordinate are zero, and only q, is non-zero. For small displacements (or

large energy), solution is given by equations (10) with i =2 and € =-1/+2E . The expansion

converges when energy is larger than 0.0015. Sum of three terms of the expansion (Eg. (10)) for W

is shown on the following figure, together with the exact W .
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Dependence of logarithm
of Wigner function
on energy

Exact

- - - Large-E appr.

ol -
0-* 0.002 0.004 0.006 0.008 0.01
E

There, it is shown also the second stationary point above the minimum. For the physical energy
E =0.177, the large-energy approximation is very accurate.

As an example of the system with four variables, we considered nhonsymmetrical vibrational
modes e, with frequencies w, 608, 3056, 1599, 1178 and w, 522, 3077, 1454, 1148 cm™. Since
all displacements for that modes are zero, the solution is simply given by the first term of the large-
energy approximation. We considered a hypothetical system with the same frequencies and four
equal non-zero displacements 0.0319, the same as ¢ from the first example. We found that large-
energy expansion converges for this system for energies larger than 0.032, so that physical energy
~0.1 lies within the range of applicability of this approximation.

These two examples show that the radius of applicability is of order of 0.01 for typical

molecul es.

Appendix. Proof of a mathematical inequality

Let us prove that if F(A,)=F(A,) and A, <A, then U(A)) <U(A,), where functions F(A)
and U(A) are defined by Eq. (7) (as a consequence of this inequality, the root of the equation

F(A) = E withminimum of U (A) isthe minimal root).
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Introducing symmetrical variables s=A, +A, and t=AA,, we rewrite increments of the

functions as
A=A &
F(A)-F(A) = 22 =y A(2-ws)
A i N , (A1)
U(A,)-U(A) = 22 £Y A(s—2wt)
q°%w
where A = —an 52(1 ! oA Multiplying the equation F(A,)-F(A,) =0 by s/2, wearriveto
—WiM —Wiis
an equation
_ N
AZ—ZAIZA(S-&)iSZ/Z):O. (A2)

Since (A, -A,)°=s"-4t>0, then s*/2>2t, and —ws’/2<-2wt. Subgtituting the latter

inequality into Eq. (A2) and taking into account that A >0, wefind

AZ;Al iA(s—Za)it)>O. (A3)

Comparing (A3) with the second equation in (A1) we conclude that U (A,) -U(A;) >0 (end of the
proof).



