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We consider radiationless vibronic relaxation: a transition without loss of energy from the bot-
tom of an upper vibrational potential energy surface of an electronically excited donor state
to one of vibrationally excited states on a lower surface of the ground electronic state. The
recently developed phase-space distribution approach to propensity rules for surface jumping
gives a general prescription for finding the jumping point of energy-transfer between two Born-
Oppenheimer surfaces. We focus here on the mathematical aspects of this approach and on its
application to multidimensional harmonic and anharmonic oscillator surfaces. By approximat-
ing the Wigner function of the acceptor by its classical limit, the problem reduces to finding a
maximum of the Wigner function of the donor on the accepting surface that can be easily solved
algebraically. We have defined auxiliary transitional variables to describe the jump between the
two surfaces and found that the Franck-Condon phase-space integrand is maximal at a point
in phase space near the eigenvector corresponding to the smallest eigenvalue of an auxiliary
matrix equation. The relation between the auxiliary transitional variables and the traditional
normal modes is discussed, and the dependence of the propensity rules on the energy gap and

on the displacement of the potential minima is formally studied.
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ble “final” states with another set of electronic quantum
numbers n¢ and different sets of nuclear quantum num-



bers N¢, e.g.
(N ng), (N2 ne), (NS ), (2)

Since the state ¥y, ,) is actually a mixed quantum
state due to small nonadiabatic effects, in the process of
its evolution in time there is nonzero probability of find-
ing the molecule in one of states (2) even if it was initially
prepared in the state (IVi,n;). According to the theory
of radiationless transitions [1], this probability is maxi-
mal for states having the same energy as the initial state
(Ni,ny), and is proportional to the density of final states
multiplied by the square of the Frank - Condon integral
— an overlap integral between the nuclear components of
the wavefunctions,

/ X (R) X s (R)AR, (3)

where here and in the following all integrals are from—oo
to +oo.

The purpose of this work is to develop a method of
choosing a state (N{, ng) or a superposition of such states
among all possible final states (2) satisfying the energy
conservation condition

E (N, ng) = E (Ni,ni) (4)

for which the density of final states multiplied by the
square of the integral (3) reaches its maximum. This
state is the most preferable accepting mode for a radia-
tionless transition.

The idea of our approach is to use the Wigner trans-
formations of the wavefunctions. The Wigner transform
of a given wavefunction ¢(R) is defined as

N
o(R, P) = (%) [ dne=irn
OB+ /bR -n/2),  (3)

where IV is the number of independent coordinates. In
the Wigner representation an overlap integral squared
can be rewritten as an integral over phase space coordi-
nates,
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where p; = pi (R, P) and py = p2(R,P) are Wigner
transforms of the functions ¢, = 91 (R) and ¢» = ¢2(R),
respectively.

The total rate of transition from a state (INVi,n;) to
a manifold of states (Nf,n¢) with a definite ng and all
possible N is proportional to a sum

2
) (/ xNi,m(R>xNﬁnf<R)dR), @)
E(Nf,nf):E(Ni,ni)

where both the Frank-Condon factor and the density of
final states are included in the expression, and xn; n; (R)

is assumed to be real. Henceforth, we denote F =
E (Ni,ni). In terms of Wigner functions (7) is propor-
tional to

(2m)N / / dePpNi,mE >

(Ng,ng)=FE

PNs,ng> (8)

where pnn = pnn(R,P). Here we study the expres-
sion in (8) to be integrated. We are especially interested
in finding a maximum of this integrand. Importance of
the point of maximum of the phase space integrand was
stressed in the paper [2] where the phase-space derivation
of propensity rules for energy transfer processes between
Born - Oppenheimer surfaces was presented.

Henceforth, we use the following approximation for the
second factor in the integrand of (8):

> pNen(R,P)=6(H(R,P)-E) (9)
E(N¢,ng)=E

which is equivalent to replacing this function by the zero-
order classical term of its semiclassical expansion in pow-
ers of h? [3, 4]. The approximation (9) reduces the inte-
gral (8) to

2m)N / pN.mi (R, P)dRAP.  (10)
H;(R,P)=E

The rest of the paper is devoted to finding a maximum
of the Wigner function pp; », (R, P) on an equipotential
surface defined through the equation Hy(R, P) = E for
both harmonic and anharmonic potentials. In doing so
we set the ground for the future analysis of radiationless
transitions of specific large polyatomic molecules. In ad-
dition, we formulate and prove some general yet simple
thumb rules for predicting the accepting mode of a given
radiationless transition.

II. FORMULATION OF THE PROBLEM

The Hamiltonian of the acceptor is approximated by a
harmonic oscillator plus third order anharmonic terms,

N N
1 1
H =5 ; (9?7 +wiq?) + Eijzk;fijkqiqjqk, (11)

where p; and ¢; are mass weighted normal momenta and
coordinates, ¢; = R;\/m; and p; = P;/\/m;. Similarly,
the Hamiltonian of the donor surface is

N N
1 2 2 2 1
H, = 3 Z (p; +wi g, ) + 6 Z fndidia,-  (12)
i=1 i,5,k=1

The mass weighted normal coordinates p; = P;/\/m}

and ¢ = R}\/m/} are generally some linear combinations
of p; and g;,

q=5 (q —q(o)) :
p' =Sp (13)



where S is an orthogonal N x N matrix (ST = S~!) and
the vector q(®) corresponds to the change of the equi-
librium structure of the molecule relative to the ground
state. An element S;; # d;; only when the ¢th and jth
normal coordinates have the same symmetry (so called
Duschinsky rotation). The same matrix transforms both
g and p since the transformation preserves the commu-
tation relations [q;,p}] = [gqi,p;] = ihd;; and since the
Hamiltonians (11) and (12) have the same kinetic energy
term, Zi\il p; = E =1 pf-

The data for different molecules are sometimes given
for R, P, R', P’ and not for the mass weighted q =
1\/[1/21{7 p = M71/2P7 q = M’l/ZR’, p = MI*1/2P1
(we introduced here diagonal matrices M and M’ with el-
ements M;; = m;d;5, Mj; = m;d;;). In terms of these co-
ordinates, the transformation to coordinates of the donor
surface, Eq. (13), reads

R =D(R-R"),
P =D'P, (14)
where
D =M~ /?sm!/2 (15)
is the Duschinsky matrix, and
D' = M'"/?sSM /2. (16)

Likewise, the transformation for the mass weighted coor-
dinates and momenta is given by

s =M'"*DM/2. (17)

Notice that the masses of the acceptor normal modes
{m;} and the transformation for R completely define the
masses of the donor normal modes {m}} and the trans-
formation for P:

M' ' =DM 'DT, (18)
D' =M'DM™}, (19)

Eq. (18) follows from orthogonality condition STS = I
with S given by Eq. (17) , and Eq. (19) is derived by
substitution of Eq. (17) into Eq. (16).

We restrict ourselves to the ground state in the donor
potential,

X (q) = Cexp(——Zw’ ’2>+xl, (20)

where C' is a normalization factor, and y; is the first an-
harmonic correction (a linear function of the coefficients
fijr) derived in section V below. The Wigner transform
of X ni(q) is C'exp (—2W) where C' is a constant pre-
factor,
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and W7 is the first anharmonic correction derived in sec-
tion V below.

The jumping between the donor and acceptor states
occurs at a point of minimum of W subject to a con-
straint Hp = E. There are several approaches to solve
a problem of constraint minimum [5]. One could use
a method of direct substitution by eliminating one of
the variables from the function W. This method is not
symmetrical with respect to the treatment of the vari-
ables {z;}. To avoid distinction between the variables,
we use a method of Lagrange multiplier by introduc-
ing an undetermined constant A and forming a function
F(x,\) = W(x) — AH(z). This function is to be made
stationary with respect to all variables {z;}, so that

oF
(3:13,'

M, and the constant A* is to be selected

(z*,\*) =0 (22)

fori =1,2,...,
so that

H(z*)=E (23)

Conditions (22) and (23) provide a system of M +1 equa-
tions for M + 1 unknowns, z7,z3,...,z},, and A* which
can be briefly summarized as:

VW =AVH, H=E (24)

The Lagrange multiplier A has concrete physical mean-
ing. Since

* *d *\ o\ *
_)\Zaxl dE =N gpHE) =),

the parameter \* is the sensitivity of the minimum value
of W to the energy gap.

After finding all the stationary points x* it is necessary
to determine for each point if it is a minimum of the
function W under restriction (32), a saddle point or a
maximum, and which of all the local minima gives the
smallest value for W. The global minimum found in this
way is a true solution of the optimization problem, see
Fig. 1.

In order to efficiently find this jumping point it is useful
to define a new set of variables z; (i =1,2,...,M = 2N)
with which both Hr and W assume a particularly simple
form:

1 M
:52x§+H1:E, (25)

§azi

where H; and W, are anharmonic corrections.

>+, (26)



The transformation from ¢; and p; (i = 1,2,...,N) to
xz; (i =1,2,...,M = 2N) is performed in the following
way. In normal coordinates of the acceptor, and after

defining ¢; = w;q;, Egs. (11) and (21) read:
| N
HFZEZ;(pf+Qz'Z)+H1: (27)
1 (@) ~(0) ~0)
== @ (& _ 59 (5. -5
w3 () i) o)
W(p)png) + W, (28)
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Defining z; = ¢;,
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FIG. 1: Finding minimum of the function W under the
energy constraint H = E. For this example, W (x1,22) =
0.4(z1 — 0.1)% +0.6(z2 — 0.2)%, H(z1,22) = 327 + $23 +
0.1523 + 0.1523 + 0.352%?z2, and E = 1. Dashed lines
represent stationary points of the function F' = W —\H,
Eq. (22). Energy-constraint points satisfying Eq. (23)
lye on the border of the dark area, H < E (the darker
is the color, the greater is the function W). Stationary
points of the function W under the energy constraint are
marked by circles, ellipses represent curves of constant
W. A point with the smallest W marked by a large circle
is the solution of the problem: z; = 1.036, z» = 0.591.
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1,2,..,N) ; & = p; 3" = 0 and Wi; = W for (i,j =
N+1,N+2,.,2N); and W;; =0 0therw1se we get;:

1 M
HF:§Z§§+H1,

N(ACE

i,j=1

w

EO)) (:cj —x( ))) + Wh.

It is now straight forward to obtain Egs. (25) and (26)
by diagonalizing the matrix W with the elements W;;.
Namely, construct a unitary matrix U so that U"'WU is
a diagonal matrix with diagonal matrix elements «;(i =
1,2,...,M) . The new coordinates z; (i = 1,2,..., M =
2N) are then given by = U1, and X = U1z,

Note that the new coordinates do not maintain their
relations as conjugate coordinates and momenta. Notice
also, that this transformation could be performed start-
ing from any coordinate system (not necessary normal
coordinates of the acceptor).

III. HARMONIC APPROXIMATION

In this section we solve the problem of finding the ac-
cepting modes for a radiationless transition in the har-
monic approximation. Results of the harmonic approx-
imation are later used as the zero-order terms in a per-
turbative approach to the anharmonicities.

A Finding the minimum of W

We are looking for a minimum of W, where

LM
— . PR . 2
W = 5 ;:1 a; (2, — X;)7, (31)

subject to the constraint

1 M
:sz?:E" (32)
i=1

The parameters characterizing the transition are the en-
ergy gap E, the normalized displacements {X;} between
the acceptor and donor potential surfaces and the pa-
rameters {a;} inversely proportional to the square of the
widths of the initial state in phase-space. (The smaller
is «;, the bigger is the normalized width of the initial
state in the phase-space direction of z;.) These param-
eters define the minimization problem that determines
the jumping point x* characterizing the nature of the
transition.

Let us implement the method of the previous section
for the quadratic functions given by formulas (31) and
(32). These functions have 2M parameters, M positive
factors a; and M displacements X;. For convenience, we



re-enumerate henceforth the variables (al,X“x ) (i =
1,2..., M) in ascending order of o; (a1 < as < ... < apy).
The equations for the stationary point, (22)

a; (7 — X;) — X'zf = 0. (33)

are solved explicitly,

a;
= X;. 4
T; a; — A* ? (3 )

fori =1,...,M if \* # ;. By substitution of (34) into
(32), we get an equation for \*,

h(\*) = E. (35)

where the function h()\) is the Hamiltonian H expressed
through A,

-3

By substitution of (34) into (31), the value of the function
W at its stationary point is expressed as a function of A,

. A) X2, (36)

W* =w(\"), (37)
where
M 2
1 A .
A) == ; X2,
=gy (Gy) 69
Since Eq. (35) reduces to a polynomial equation of

degree 2M, it has at most 2M real roots each of which
corresponds to some stationary point x* given by (34).
Let A; and Ay be two different roots of Eq. (35), i.e
h(A1) = h(A2) = E. In order to select the smallest of the
corresponding values of W, w(\1) and w(A2), we notice
that

W) = () = 3 O +2) [10hs) = hOW)]
LN ul o; X ?
B REDY e - @

Validity of the identity (39) can be easily checked by
substitution expressions (36) and (38) for the functions
h and w. Since h(A2) — h(A1) = 0 and the sum over
i is positive, w(A2) — w(\;) has the same sign as A2 —
A1. Thus, the smaller is the root A*, the smaller is the
function W.

The function h(A) monotonously increases from 0 to
FE; when X increases from —oo to ay, where

00 if X1 # 0,

E, = v Vo -
L o (525) X2 X =0,

(40)

There are two possible cases. In the first case, when
X1 =0and E > Ey, the minimal root of (23) is \* = ay,

xf for i # 1 are expressed through A* by (34), and from
(32) we get 1. In the second case, when E < Ej, there
is a unique root A* of Eq. (35) on the interval (—oo,a1),
the coordinates of this minimum are expressed through
A* by (34), and the minimum of W is given by (37).

It can be shown that there are no other cases. In par-
ticular, assuming A\* = «; for some ¢ # 1, X; = 0 does
not give a consistent solution. In the special sub-case of
a1 = ag if X7 # 0 orif X5 # 0 then E; = oo and the sec-
ond case of E < F; applies. Otherwise, if X; = X5 =0
there is a degeneracy between the first two modes. The
degenerate case will be considered elsewhere.

B Results

Let us summarize the solution in the harmonic ap-
proximation. Given an initial Wigner function and an
accepting Hamiltonian, applying a harmonic approxima-
tion and a change of variables, re-enumerating the vari-
ables so that a; is the smallest of all «;, and explicitly
solving Eqgs. (31) and (32), we get the jumping point for
the radiationless transition. There are two cases:

Case I This case applies when X; = 0 and E > F.
The coordinates at the jumping point are then given by

_ 1/2 .o .
xzz{ig(EX ENM? ifi=1, 1)

p—_— ife #£1.
The two possible signs of 7 give rise to two points of
minima with the same value of W,

a1 <L o X2
W*=mE - =2y 22 42
a 2 Z oa; — Qg (42)
=2
There are two symmetrical minima, in contrast to the
second case, discussed below, when the global minimum
is single.
Case II This case applies when X; # 0 or when X; =
0 and E < E;. The coordinates at the jumping point are
given by Eq. (34):

r =

—X
¢ Oéi—)\* !

where A, is the minimal root of the equation:

C Discussion

In a radiative vertical transition, only displaced modes
are excited. The initial conditions for dynamics on the
accepting potential energy surface, which we call the
jumping point are then given by:

x; = X, (44)



The energy that goes into vibration and the value of the
logarithm of the Wigner function at the jumping point
are then given respectively by:

1 M

Eo =3 Z ai X7, (45)
i=1
1 M

Wo =3 Z; a; X2 (46)

Energy is conserved because the photon takes the rest of
the energy

Ephoton =F - EO; (47)

where E is the energy gap between minima of the donor
and accepting surfaces.

In a radiationless transition there is no photon. The
released electronic energy must become vibrational en-
ergy. The two cases I and II differ in how this energy is
distributed between the different vibrations.

In case I, one of the vibrational degrees of freedom
replaces the photon. Despite the fact that X; = 0,
i.e. there is no displacement along the z; direction in
phase space (be it a coordinate or a momentum), x; is
an accepting mode for this transition because the initial
phase-space quasidistribution is the widest in this direc-
tion, in normalized phase-space coordinates for which the
accepting hypersurface in phase-space is a multidimen-
sional sphere. We shall refer to z; as the major accepting
mode.

In contrast, case II does not look essentially different
from a vertical transition. Namely, only displaced modes
are involved in the transition, and the jump for each co-
ordinate involved is proportional to this mode’s displace-
ment. No momentum jumps exist, since the hamiltonians
are never displaces along a momentum phase-space coor-
dinate. The smaller is \,, the closest is the transition
to a vertical one, as «;/(a; — A.) is closer to 1. Physi-
cally a small lambda corresponds to the special case when
Hp(X)=E.

D Dependence on the energy gap

In case I the dependence on the energy gap is triv-
ial. All the phase-space coordinates at the jumping point
but one do not depend on the energy gap but only on
their respective displacements and the relative difference
of widths between each one of them and the major ac-
cepting mode. x1, the jumping coordinate of the major
accepting mode grows with the energy gap. The larger
is the energy gap - the more important is this accepting
mode.

In order to consider the properties of the jumping point
as a function of the energy gap E in case II, for both
limits of small and large E Eq. (43) is rewritten here in

a simplified form
M 2
Bi
_r =1 4
> () -o (48)

=1

where f; = o |X;| (2E) /2.

For a small energy gap, Eq. (48) has two real roots
A= =22 Bf)lm. The solution corresponding to the
minimal (negative) root asymptotically behaves as

N = — (Eo/E)', (49)
ot = 0 X; (E/Eo)'?, (50)
W* =Wy — 2(EE,)"/*. (51)

In the limit of a large energy gap, when 3; — 0, Eq.
(48) has 2M roots A = a; = 84, (i = 1,2,...,M). The
minimal root corresponding to the minimum of W is A* =
a1 — 1. It is clear that X; = 0 belongs to the case
I for sufficiently large E. A perturbative solution, with
e = signX; (2E)'/? as a small parameter shows that for
X, # 0 as well, although A* depends on the energy, this
dependence approaches zero for a large enough energy
gap, for which:

z] = V2E sign(Xy), (52)
* _ &7}
"I"i#l = 7042» p X,‘
ajoq | XX 2
- + O(g%). 53
R O 6y

Here, again, in the limit of a large energy gap x; is the
major accepting mode regardless of its being displaced or
not. If the displacement X; = 0 there are two jumping
points with opposite signs, while if X; # 0 the sign of
the jump is determined by the sign of the displacement.

IV. SIMPLE CASES

In the previous section a complete solution in the har-
monic approximation was derived. For any given radi-
ationless transition the accepting mode(s) can be found
by applying this procedure. To gain some intuition, we
apply it here to some simple examples. We separately
check the influence of the frequencies, Duchinsky rota-
tions, and the displacements, on the results. We also
check the predictive power of the results on the energy
distribution between the modes, for an example where
this energy distribution is well defined.

A Frequencies

In the simplest case, when the normal coordinates

of the initial and the final states are the same (q =

g, p = p) and m; = m}, the set of variables



{z1,22,...,xp} consists of \/m;w;R; and 1/,/m;P;, and
the set {1, aa, ..., aps } consists of w! /w? and 1/w! sorted
in ascending order. Since E; = 0, this system belongs
to the case I considered in the previous section, with
x} = £V2E and 3 = 2§ = ... = %, = 0. There is only
one accepting mode. In terms of normal mode coordi-
nates it means that if the minimum number in the set
{wi/w}, 1/wi} is a1 = wj /w?, then the launching point
for the transition is at R;, = £ (2E/7m0)1/2 Jwi, and the

other coordinates and momenta are zero. If a; = 1/wj ,

then P, =+ (2Emi0)1/2 and the other coordinates and
momenta are zero.

B Duchinsky rotation

Now, suppose that go = 0 and m; = m, = m,
N = 2, and the matrix S is a unitary matrix of a
general form S = (f‘s’isn“; (s:g;:‘;), where ¢ is a rotation
angle. Then, {aq,as,a3,as} consists of the following
four numbers: {A £ [A? — a1a.] vz 1/w},1/wh}, where
A = Lay + az) cos? o + 3(by + by)sin® ¢, a1 = w]/wi,
ay = whjwi, by = wh/wi, by = wijwi If ¢ = 0,
then it is {a1,a2,1/w],1/wh}. If ¢ = 7/2, then it is
{b17 b27 ]_/(Ui, ]-/wé}

The next example is numerical. It demonstrates that
a Duchinsky rotation can influence the jumping point.

Suppose that go = 0 and m; = m}, = m, N = 3,
cosp sing 0

S = (—sincp cos ¢ 0), w1 = 06, Wy = 03, w3 = 0603,
0 0 1

wi = 0.595, wh = 0.298, wh = 0.6 (w] were taken slightly

smaller than w; as it usually happens in molecules). De-

pendence of {a;} on ¢ is shown on Fig. 2. If ¢ <
a, : — .
(pl* ) Yay
' w? (p, 20) Vw,
v @#0) wy'le;
o} A-[A-aa]" .
(%, #0)

155 E
15 . . .

0 0.1 0.2 0.3 0.4 0.5

FIG. 2: Dependence of the smallest four eigenvalues a;,
i =1,2,3,4, on the rotation angle ¢. The rest of eigen-
values {1/w), A+ [A? — a1as] 1/Z} are larger than 3. The
smallest eigenvalue a; determines the minimum of W
(Wmin = OélE).

pe = 0.033, then only one phase space jumping coor-
dinate g3 is nonzero, otherwise only two coordinates ¢
and g5 are nonzero. Here, since «; are independent of
the energy, and because of the fact that dWin /dE = a1,
Whin = a1 F, and the maximum of the Wigner function
on the surface of the constant energy is proportional to
exp(—2a1 E).

C Displacements

Consider a simple case with non-zero displacement,
with N =2, m; = m}, and go = (Q,0), i.e. ¢ = ¢ — Q,
g5 = q2. We define:

/2
w mywiQ? !

A= 2| (i , 54
w? [ ( 2E (54)
! ! 1 1
o = min <A°"—;“’—§—,—,> (55)
Wi Wy Wy Wy

There are four sub-cases. (1) If 0 = 1/w] or o0 = A,
there is only one non-zero jumping coordinate

a1y = Q/(1 = Awi/w)). (56)

(2) If 0 = wh/w? then there are two non-zero jumping
coordinates ¢7 and ¢3. (3) Ifo = 1/w{ then there are two
non-zero phase-space jumping coordinates ¢ and p}. (4)
If o = 1/wh then there are two non-zero phase-space
jumping coordinates ¢; and p3.

The larger is the displacement and the smaller is the
energy gap, the smaller is lambda,, and ¢; becomes the
only accepting mode. In contrast, in the limit of a very
large energy gap, the displacement no longer plays a role
in the minimization problem predicting the jump. In this
limit, the frequencies alone determine the jump as in the
previous case of zero diplacement.

D Predictive power of the jumping point

The later case with additional simplifications m; =
my = 1 and w; = we = 1 was considered in [2]. This
paper has plots of the initial wave function,

Ui(q1,q2) = Yolqr — @)vo(qz2) (57)

vs. the final wave function

Ur (g1, 2) = Y Cji(ar)thn—;(a2) (58)

=0

where 9;(¢) is a harmonic oscillator wave function, E =
n + 1, and C} is an overlap integral between the ground
state ¥r and the excited wave function ¢;(g1)¢n—;(g2).
It was demonstrated that the pattern of the final
wave function depends on the position of the phase-
space jump. Here, we reconsider six numerical examples



from the paper [2] by a quantitative comparison with the
phase-space results. We calculate partial energies of ex-
citations along two different modes,

n
B=PF Y G+ 3),
j=0
n
=Pg' ) Cin=j+3),
j=0

where Pp = E ", C} is the total probability of a tran-
sition to Ep = E El and E» are well defined physical
observables because the two dimensional harmonic oscil-
lator here considered is seperable along ¢; and g». They
can be calculated exactly and compared to their phase-
space counterparts

* *2 *2 * *2 *2
Elzé(pl +q1), E2:%(p2 +‘12)a

where 7, p}, x5, p5 are the phase space coordinates of
the jump. We compare the percentage of energy going
into the first mode, exact vs phase-space result,

R, =E,/E, Ri=E[/E (59)
Table I shows that R; and R} agree within 10% for all
examples with N > 20.

V. ANHARMONICITY

In this section we study the effect of anharmonicities on
the jump. We consider anharmonic potential surfaces for
the donor’s and acceptor’s Hamiltonians, focusing here
on Hamiltonians of harmonic oscillators perturbed by
cubic anharmonic terms as in Egs. (11) and (12). Gen-
eralization to any polynomial anharmonicity is straight
forward.

A The ground-state Wigner function for an
anharmonic oscillator

Given the Hamiltoniam (12) we are looking for W; of
Eq. (21): the leading order anharmonic correction to the
ground state Wigner function. We do so by expanding:

S(g) = —In¥(q) = So(q) +£S1(q) + O(£?), (60)
E = Ey + (B + 0(€2), (61)

where ¢ is a small parameter of the same order as f;j,
and the zero-order terms are:

1L,
So(q) = > Zwiqi (62)
i=1

1 N
5 > wi. (63)
i=1

Eo

We omit the primes in this subsection, although we have
in mind the excited donor surface which was marked by
primed variables in the previous and subsequent sections.
Rewriting the Scrodinger equation in terms of the func-
tion S(q) [6] gives the equation:

2 N
1 oS
__Z <8qz> +§;8—$ +V(g)

where V(¢) is the potential. Without the second sum,
Eq. (64) reduces to the Hamilton - Jacobi equation for
the action of a classical particle moving in the potential
E — V(q). In such a quasiclassical limit, a perturbation
theory for S(q) is easily developed [6]. The more gen-
eral quantum case which is considered here is still solv-
able analytically, but the corrections obtained have more
monomial terms.

To first order in the perturbation, Eq. (64) reduces to
a linear equation with respect to the number F; and the
function S;(q):

_E=0, (64)

Z 0S50 851

5251
—F =

where V(q) is the cubic anharmonic part of the potential:
N
Z Lk 0954k, (66)

ij,k=1

Let us suppose that Si(g) is a polynomial, then ,as
soon as the inhomogeneous part of Eq. (65) , Vi (q) — Ei,
is a third degree polynomial, it may be shown that the
solution is at most a third degree polynomial too,

ZAzQz + = ZB ,j4i4;j ‘|‘ = Z C; i,5,k2i45qk -
i,7,k=1
(67)

We substitute Eq. (67) and Eq. (66) in Eq. (65) and solve
to obtain:

E1 = 0,
N

1 £

A= i,j,J
¢ 2w; jz:; w; + 2&)]' ’
Bi,j = 0 B
£

Cijy = —Lk (68)

wi—l—wj—l—wk'

Having calculated S;, we would like to calculate the
ground-state Wigner function expanded in powers of &,

p(a,p) = po(q,p) +Ep1(g,p) + O(€?),  (69)

where po(gq,p) is the harmonic-oscillator ground-state
Wigner function, and p;(g,p) is the first anharmonic



TABLE I: Accuracy of prediction by the phase-space method of the partition of energy between different modes for
the model of two coupled harmonic oscillators, Hy = 3(p? + p3 + ¢ + ¢3), Hr = (w|p} + Wb’} + (@1 — Q)> + 3)
for examples studied earlier in [2]. Percentage of energy going to the first mode is given by Eq. (59).

Parameters R, (%)

wi wh Q n=2 n==~6 n=12 n =20 n = 30

0.02 0.18 0 60.4 74.0 82.5 91.6 94.5
100.0° 100.0° 100.0* 100.0° 100.0*

10 2.2 0 71.8 87.8 93.8 96.3 97.5
100.0° 100.0° 100.0* 100.0° 100.0*

0.45 0.01 0 25.3 10.4 5.4 3.3 2.2

0.0¢ 0.0¢ 0.0¢ 0.0¢ 0.0¢

2 18 0 24.8 10.1 5.2 3.2 2.2

0.0* 0.0* 0.0* 0.0* 0.0*

2 0.1 3 82.6 82.0 44.9 27.2 18.3
100.0° 71.2¢ 38.4° 23.7¢ 16.1°

2 10 3 82.6 82.0 44.9 27.2 18.3
100.0¢ 71.2¢ 38.4% 23.7% 16.1¢

?The phase space result RY.

correction to be determined here. Substituting the per-  where

turbed wavefunction 1 1
HO = 3 fo, HY =~ Z fijkrizjzy, (76)

¥(g) = [1 - £Si (@) exp (~So(@) + O, (70) i 622
in the definition of the Wigner function, we get w© — %Zaig‘;?, wl = % Z BijkTiTjTh.  (77)
N i 0,7,k
~ [ — —ip'm
Plap) ~ (27r> / dne As before, x; are variables collecting coordinates and mo-
x[1—£S1(q+m/2) — £S1(q — n/2)] menta, T; = z; — X;, X; are the corresponding displace-

ments, and £ is a perturbation parameter. Eq. (24) is
x exp[~So(a +n/2) ~ Sola —n/2)] (1) bt 21 S

~ po(q, p) exp(—EWh) (72)
where P Y PR W (PSR o
;T + 2 Z/Bljk)x]xk = T; + D) Zfz]kxjxk ,
X 9 jok jok
ro(p,a) = —y [ ex (-— - wzQz) ; (73) (78)
= Z 2,1 Z fijpTizjzy = (79)
and, using Eq. (68) , i,k
W, = Z fijg ” The unknown variables z; (i = 1,...,M) and the La-
7 2wiwj grange multiplier A are searched in the form
n Z ik 9i9jq9k  9iP;jPk , (74) T = x(O) + 33(1)7) +o(n), (80)
w; +wj + wg 3 Wik L
i,k A= 2O £ XOy 4 o(n). (81)
=% Z;Bijkx"xjxk (75) In the zero order approximation (n = 0), Eq. (78), (79)
ZYJ7

are
oz,-:EEO) = >\<°>x§°),

1 0)2

g =E,

Eqgs. (24) are solved here by perturbation theory, for i
the functions H = HO + HO¢ W = WO 4+ whg,

B Anharmonic effects on the jump



where T, ' = ;L'EO) — X;. In the first order in 5, Eq. (78),
(79) are

1y, 1 _(0)~(0

'+ 3 Zﬁijkmg 170 =

3.k

1
A0 {2 + 2 > fapal @ | + A0, (82)
7.k

Zx :c(l)-i- Zf”k:c(o):c(o)xk =0. (83)

5.k

Let us find the first correction to the harmonic approxi-
mation for the two case discussed above using these for-
mulas.

Case (1) The unperturbed coordinates are given in
this case by by Eqgs.(41) while the unperturbed Lagrange
multiplier is A(®) = ;. It then follows from (82) for i = 1
that

1
AL = Z (ﬁlgkm(o)ﬂf;c ) _ alfl]km( ),.(0 )) . (84)

0
2;1,'5 ) ik

and from (82) for ¢ # 1 that

2V = '1 FZ(alfmkx” 0 _ g5z )im)
i,k

Js

+)\(1)x£0)}, i#1. (85)

Finally, the remaining unknown variable :cgl) can be

found by substituting (??) into (83),

s o 4 L 2 fa®alVa
1 £l i,j,k
(86)

In zero order (harmonic approximation), there are two
points of minimum differing by a sign of z; with the same
Wnin given by (42). In the first order approximation,
Wmin 18 given by (89), and it is no lonker the same for
the two points, corresponding to different signs in Eq.
(??). So, a true minimum is the one foz which (89) is
smaller.

Case (2) In this case the unperturbed coordinates and
Lagrange fultiplier are given by Egs. (34,43). It follows
from (82) that

1 1 (0) _(0)_(0)
= - )\* [2 Z (}\ f”k.’l,' Ty, B,-jkxj Ty )

3.k

10

Inserting (87) into (83), we find

m_ 1 £\ z” (0) ~(0)
A =3 ;ai_)\* g% . [3&31@33 T,

S0+ a:-)fijk:c;%;“)] . (88)

Finally, expanding the minimum value of the constramed
function W into power series Wy, = w + wi f +

min min

0(€2), we find that W'°) is given by Eq. (37), and

min

mm ZO( _( ) + Zﬁz]

5,5,k

(0) (0) (89)

C Simple examples

Suppose that

N
'(¢) = fid}, (90)
i=1

then....

VI. SUMMARY AND CONCLUSIONS
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