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We consider radiationless vibronic relaxation: a transition without loss of energy from the bot-

tom of an upper vibrational potential energy surface of an electronically excited donor state

to one of vibrationally excited states on a lower surface of the ground electronic state. The

recently developed phase-space distribution approach to propensity rules for surface jumping

gives a general prescription for �nding the jumping point of energy-transfer between two Born-

Oppenheimer surfaces. We focus here on the mathematical aspects of this approach and on its

application to multidimensional harmonic and anharmonic oscillator surfaces. By approximat-

ing the Wigner function of the acceptor by its classical limit, the problem reduces to �nding a

maximum of the Wigner function of the donor on the accepting surface that can be easily solved

algebraically. We have de�ned auxiliary transitional variables to describe the jump between the

two surfaces and found that the Franck-Condon phase-space integrand is maximal at a point

in phase space near the eigenvector corresponding to the smallest eigenvalue of an auxiliary

matrix equation. The relation between the auxiliary transitional variables and the traditional

normal modes is discussed, and the dependence of the propensity rules on the energy gap and

on the displacement of the potential minima is formally studied.
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I. INTRODUCTION

Let us consider a molecule described by a potential
V (R; r) where R and r are coordinates of the nuclei and
electrons respectively. In the adiabatic approximation,
the quantum states of the molecule are determined in two
steps. First, the Schr�odinger equation is solved with re-
spect to the coordinates of the electrons for an arbitrary
frozen con�guration of the nuclei described by coordi-
natesR that are treated as parameters of the Schr�odinger
equation. The result is an eigenfunction 'n(r ;R) and an
eigenvalue Un(R) where n is a set of electronic quantum
numbers. The second step is to solve the Schr�odinger
equation with respect to the coordinates of the nuclei,
R, in an e�ective potential Un(R) (which was found in
the �rst step), and to �nd eigenfunctions �N;n(R) and
eigenvalues EN;n where N is a set of vibrational and ro-
tational quantum numbers of the nuclear motion (in this
equation, n are parameters because the potential Un(R)
depends on n). The result of the adiabatic approximation
is the wavefunctions in the form

	N;n(R; r) = �N;n(R)'n(r ;R) (1)

and the corresponding energiesEN;n. Even when the adi-
abatic approximation does not apply, one can use these
wavefunction as a basis set.
We study the following problem. Let some \ini-

tial" state 	(Ni;ni) of a molecule have quantum numbers
(Ni; ni). Now, suppose that there exist several possi-
ble \�nal" states with another set of electronic quantum
numbers nf and di�erent sets of nuclear quantum num-
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bers Nf , e.g.

(N
(1)
f ; nf); (N

(2)
f ; nf); (N

(3)
f ; nf); ::: (2)

Since the state 	(Ni;ni) is actually a mixed quantum
state due to small nonadiabatic e�ects, in the process of
its evolution in time there is nonzero probability of �nd-
ing the molecule in one of states (2) even if it was initially
prepared in the state (Ni; ni). According to the theory
of radiationless transitions [1], this probability is maxi-
mal for states having the same energy as the initial state
(Ni; ni), and is proportional to the density of �nal states
multiplied by the square of the Frank - Condon integral
{ an overlap integral between the nuclear components of
the wavefunctions,Z

�Ni;ni
(R)�Nf ;nf

(R)dR; (3)

where here and in the following all integrals are from�1
to +1.
The purpose of this work is to develop a method of

choosing a state (N�

f ; nf) or a superposition of such states
among all possible �nal states (2) satisfying the energy
conservation condition

E (N�

f ; nf) = E (Ni; ni) (4)

for which the density of �nal states multiplied by the
square of the integral (3) reaches its maximum. This
state is the most preferable accepting mode for a radia-
tionless transition.
The idea of our approach is to use the Wigner trans-

formations of the wavefunctions. The Wigner transform
of a given wavefunction  (R) is de�ned as

�(R;P ) =

�
1

2�

�N Z
d�e�iP ��

� (R+ �=2) (R� �=2); (5)

where N is the number of independent coordinates. In
the Wigner representation an overlap integral squared
can be rewritten as an integral over phase space coordi-
nates, ����Z  �

1 2dR

����2 = (2�)
N

Z Z
dRdP �1�2; (6)

where �1 = �1(R;P ) and �2 = �2(R;P ) are Wigner
transforms of the functions  1 =  1(R) and  2 =  2(R),
respectively.
The total rate of transition from a state (Ni; ni) to

a manifold of states (Nf ; nf) with a de�nite nf and all
possible Nf is proportional to a sum

X
E(Nf ;nf )=E(Ni;ni)

�Z
�Ni;ni

(R)�Nf ;nf
(R)dR

�2

; (7)

where both the Frank-Condon factor and the density of
�nal states are included in the expression, and �Ni;ni

(R)

is assumed to be real. Henceforth, we denote E =
E (Ni; ni). In terms of Wigner functions (7) is propor-
tional to

(2�)
N

Z Z
dRdP �Ni;ni

X
E(Nf ;nf)=E

�Nf ;nf
; (8)

where �N;n = �N;n(R;P ). Here we study the expres-
sion in (8) to be integrated. We are especially interested
in �nding a maximum of this integrand. Importance of
the point of maximum of the phase space integrand was
stressed in the paper [2] where the phase-space derivation
of propensity rules for energy transfer processes between
Born - Oppenheimer surfaces was presented.
Henceforth, we use the following approximation for the

second factor in the integrand of (8):X
E(Nf ;nf )=E

�Nf ;nf
(R;P ) = Æ (Hf(R;P )�E) (9)

which is equivalent to replacing this function by the zero-
order classical term of its semiclassical expansion in pow-
ers of �h2 [3, 4]. The approximation (9) reduces the inte-
gral (8) to

(2�)
N

Z
Hf (R;P )=E

�Ni;ni
(R;P )dRdP : (10)

The rest of the paper is devoted to �nding a maximum
of the Wigner function �Ni;ni

(R;P ) on an equipotential
surface de�ned through the equation Hf(R;P ) = E for
both harmonic and anharmonic potentials. In doing so
we set the ground for the future analysis of radiationless
transitions of speci�c large polyatomic molecules. In ad-
dition, we formulate and prove some general yet simple
thumb rules for predicting the accepting mode of a given
radiationless transition.

II. FORMULATION OF THE PROBLEM

The Hamiltonian of the acceptor is approximated by a
harmonic oscillator plus third order anharmonic terms,

Hf =
1

2

NX
i=1

�
p2i + !2i q

2
i

�
+

1

6

NX
i;j;k=1

fijkqiqjqk; (11)

where pi and qi are mass weighted normal momenta and
coordinates, qi = Ri

p
mi and pi = Pi=

p
mi. Similarly,

the Hamiltonian of the donor surface is

Hi =
1

2

NX
i=1

�
p0
i

2
+ !0

i

2
q0
i

2
�
+

1

6

NX
i;j;k=1

f 0
ijk
q0
i
q0
j
q0
k
: (12)

The mass weighted normal coordinates p0
i
= P 0

i
=
p
m0

i

and q0
i
= R0

i

p
m0

i
are generally some linear combinations

of pi and qi,

q0 = S
�
q � q(0)

�
;

p0 = Sp (13)
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where S is an orthogonal N �N matrix (ST = S�1) and
the vector q(0) corresponds to the change of the equi-
librium structure of the molecule relative to the ground
state. An element Sij 6= Æij only when the ith and jth
normal coordinates have the same symmetry (so called
Duschinsky rotation). The same matrix transforms both
q and p since the transformation preserves the commu-
tation relations [q0

i
; p0

j
] = [qi; pj ] = i�hÆij and since the

Hamiltonians (11) and (12) have the same kinetic energy

term,
P

N

i=1 p
2
i
=
P

N

i=1 p
0

i

2
.

The data for di�erent molecules are sometimes given
for R, P , R0, P 0 and not for the mass weighted q =

M1=2R, p = M�1=2P , q0 = M01=2R0, p = M0�1=2
P 0

(we introduced here diagonal matricesM andM0 with el-
ementsMij = miÆij ,M

0

ij
= m0

i
Æij). In terms of these co-

ordinates, the transformation to coordinates of the donor
surface, Eq. (13), reads

R0 = D
�
R�R(0)

�
;

P 0 = D0P ; (14)

where

D =M0�1=2
SM1=2 (15)

is the Duschinsky matrix, and

D0 =M01=2SM�1=2: (16)

Likewise, the transformation for the mass weighted coor-
dinates and momenta is given by

S =M01=2DM�1=2: (17)

Notice that the masses of the acceptor normal modes
fmig and the transformation for R completely de�ne the
masses of the donor normal modes fm0

i
g and the trans-

formation for P :

M0�1 � DM�1DT; (18)

D0 =M0DM�1; (19)

Eq. (18) follows from orthogonality condition STS = I
with S given by Eq. (17) , and Eq. (19) is derived by
substitution of Eq. (17) into Eq. (16).
We restrict ourselves to the ground state in the donor

potential,

�Ni;ni
(q) = C exp

 
�
1

2

NX
i=1

!0

i
q0
i

2

!
+ �1; (20)

where C is a normalization factor, and �1 is the �rst an-
harmonic correction (a linear function of the coeÆcients
fijk) derived in section V below. The Wigner transform
of �Ni;ni

(q) is C 0 exp (�2W ) where C 0 is a constant pre-
factor,

W =
1

2

NX
i=1

1

!0

i

�
p0
i

2
+ !0

i

2
q0
i

2
�
+W1 (21)

and W1 is the �rst anharmonic correction derived in sec-
tion V below.
The jumping between the donor and acceptor states

occurs at a point of minimum of W subject to a con-
straint HF = E. There are several approaches to solve
a problem of constraint minimum [5]. One could use
a method of direct substitution by eliminating one of
the variables from the function W . This method is not
symmetrical with respect to the treatment of the vari-
ables fxig. To avoid distinction between the variables,
we use a method of Lagrange multiplier by introduc-
ing an undetermined constant � and forming a function
F (x; �) = W (x) � �H(x). This function is to be made
stationary with respect to all variables fxig, so that

@F

@xi
(x�; ��) = 0 (22)

for i = 1; 2; :::;M , and the constant �� is to be selected
so that

H (x�) = E (23)

Conditions (22) and (23) provide a system ofM+1 equa-
tions for M + 1 unknowns, x�1; x

�

2; :::; x
�

M
, and �� which

can be briey summarized as:

rW = �rH; H = E (24)

The Lagrange multiplier � has concrete physical mean-
ing. Since

d

dE
W (x�) =

MX
i=1

@W

@xi
(x�)

dx�
i

dE

= ��
MX
i=1

@H

@xi
(x�)

dx�
i

dE
= ��

d

dE
H (x�) = ��;

the parameter �� is the sensitivity of the minimum value
of W to the energy gap.
After �nding all the stationary points x� it is necessary

to determine for each point if it is a minimum of the
function W under restriction (32), a saddle point or a
maximum, and which of all the local minima gives the
smallest value for W . The global minimum found in this
way is a true solution of the optimization problem, see
Fig. 1.
In order to eÆciently �nd this jumping point it is useful

to de�ne a new set of variables xi (i = 1; 2; :::;M = 2N)
with which both HF andW assume a particularly simple
form:

HF =
1

2

MX
i=1

x2
i
+H1 = E; (25)

W =
1

2

MX
i=1

�i (xi �Xi)
2
+W1; (26)

where H1 and W1 are anharmonic corrections.
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The transformation from qi and pi (i = 1; 2; :::; N) to
xi (i = 1; 2; :::;M = 2N) is performed in the following
way. In normal coordinates of the acceptor, and after
de�ning eqi � !iqi, Eqs. (11) and (21) read:

HF =
1

2

NX
i=1

�
p2i + eq2i �+H1; (27)

W =
1

2

NX
i;j=1

�
W

(q)
ij

�eqi � eq(0)i

��eqj � eq(0)j

�
+W

(p)
ij
pipj

�
+W1; (28)

where

W
(p)
ij

�
NX
k=1

1

!0

k

SkiSkj (29)

W
(q)
ij

=

NX
k=1

!0

k

!i!j
SkiSkj : (30)

De�ning exi = eqi, ex(0)i
= eq(0)

i
and Wij = W

(q)
ij

for (i; j =

-3 -2 -1 0 1 2 3
x1

-3

-2

-1

0

1

2

x 2

FIG. 1: Finding minimum of the function W under the
energy constraintH = E. For this example,W (x1; x2) =
0:4(x1 � 0:1)2+0:6(x2 � 0:2)2, H(x1; x2) =

1
2x

2
1 +

1
2x

2
2 +

0:15x31 + 0:15x32 + 0:35x21x2, and E = 1. Dashed lines
represent stationary points of the function F =W ��H ,
Eq. (22). Energy-constraint points satisfying Eq. (23)
lye on the border of the dark area, H < E (the darker
is the color, the greater is the function W ). Stationary
points of the function W under the energy constraint are
marked by circles, ellipses represent curves of constant
W . A point with the smallestW marked by a large circle
is the solution of the problem: x1 = 1:036, x2 = 0:591.

1; 2; :::; N) ; exi = pi ex(0)i
= 0 and Wij = W

(p)
ij

for (i; j =

N + 1; N + 2; :::; 2N); and Wij = 0 otherwise, we get:

HF =
1

2

MX
i=1

ex2i +H1;

W =
1

2

MX
i;j=1

�
Wij

�exi � ex(0)i

��exj � ex(0)j

��
+W1:

It is now straight forward to obtain Eqs. (25) and (26)
by diagonalizing the matrix W with the elements Wij .
Namely, construct a unitary matrixU so thatU�1WU is
a diagonal matrix with diagonal matrix elements �i(i =
1; 2; :::;M) . The new coordinates xi (i = 1; 2; :::;M =

2N) are then given by x � U�1~x, and X � U�1~x(0).
Note that the new coordinates do not maintain their

relations as conjugate coordinates and momenta. Notice
also, that this transformation could be performed start-
ing from any coordinate system (not necessary normal
coordinates of the acceptor).

III. HARMONIC APPROXIMATION

In this section we solve the problem of �nding the ac-
cepting modes for a radiationless transition in the har-
monic approximation. Results of the harmonic approx-
imation are later used as the zero-order terms in a per-
turbative approach to the anharmonicities.

A Finding the minimum of W

We are looking for a minimum of W , where

W =
1

2

MX
i=1

�i (xi �Xi)
2
; (31)

subject to the constraint

HF =
1

2

MX
i=1

x2
i
= E; : (32)

The parameters characterizing the transition are the en-
ergy gap E, the normalized displacements fXig between
the acceptor and donor potential surfaces and the pa-
rameters f�ig inversely proportional to the square of the
widths of the initial state in phase-space. (The smaller
is �i, the bigger is the normalized width of the initial
state in the phase-space direction of xi.) These param-
eters de�ne the minimization problem that determines
the jumping point x� characterizing the nature of the
transition.
Let us implement the method of the previous section

for the quadratic functions given by formulas (31) and
(32). These functions have 2M parameters, M positive
factors �i and M displacements Xi. For convenience, we
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re-enumerate henceforth the variables (�i; Xi; xi) (i =
1; 2:::;M) in ascending order of �i (�1 � �2 � ::: � �M ).
The equations for the stationary point, (22),

�i (x
�

i
�Xi)� ��x�

i
= 0: (33)

are solved explicitly,

x�
i
=

�i

�i � ��
Xi: (34)

for i = 1; :::;M if �� 6= �i. By substitution of (34) into
(32), we get an equation for ��,

h(��) = E: (35)

where the function h(�) is the Hamiltonian H expressed
through �,

h(�) =
1

2

MX
i=1

�
�i

�i � �

�2

X2
i
: (36)

By substitution of (34) into (31), the value of the function
W at its stationary point is expressed as a function of �,

W � = w(��); (37)

where

w(�) =
1

2

MX
i=1

�i

�
�

�i � �

�2

X2
i : (38)

Since Eq. (35) reduces to a polynomial equation of
degree 2M , it has at most 2M real roots each of which
corresponds to some stationary point x� given by (34).
Let �1 and �2 be two di�erent roots of Eq. (35), i.e.
h(�1) = h(�2) = E. In order to select the smallest of the
corresponding values of W , w(�1) and w(�2), we notice
that

w(�2)� w(�1) =
1

2
(�1 + �2) [h(�2)� h(�1)]

+
1

4
(�2 � �1)

3
MX
i=1

�
�iXi

(�i � �1) (�i � �2)

�2
: (39)

Validity of the identity (39) can be easily checked by
substitution expressions (36) and (38) for the functions
h and w. Since h(�2) � h(�1) = 0 and the sum over
i is positive, w(�2) � w(�1) has the same sign as �2 �
�1. Thus, the smaller is the root ��, the smaller is the
function W .
The function h(�) monotonously increases from 0 to

E1 when � increases from �1 to �1, where

E1 =

8<:1 if X1 6= 0;

1
2

P
i 6=1

�
�i

�i��1

�2
X2
i

if X1 = 0:
(40)

There are two possible cases. In the �rst case, when
X1 = 0 and E � E1, the minimal root of (23) is �

� = �1,

x�
i
for i 6= 1 are expressed through �� by (34), and from

(32) we get x1. In the second case, when E < E1, there
is a unique root �� of Eq. (35) on the interval (�1; �1),
the coordinates of this minimum are expressed through
�� by (34), and the minimum of W is given by (37).
It can be shown that there are no other cases. In par-

ticular, assuming �� = �i for some i 6= 1, Xi = 0 does
not give a consistent solution. In the special sub-case of
�1 = �2 if X1 6= 0 or if X2 6= 0 then E1 =1 and the sec-
ond case of E < E1 applies. Otherwise, if X1 = X2 = 0
there is a degeneracy between the �rst two modes. The
degenerate case will be considered elsewhere.

B Results

Let us summarize the solution in the harmonic ap-
proximation. Given an initial Wigner function and an
accepting Hamiltonian, applying a harmonic approxima-
tion and a change of variables, re-enumerating the vari-
ables so that �1 is the smallest of all �i, and explicitly
solving Eqs. (31) and (32), we get the jumping point for
the radiationless transition. There are two cases:
Case I This case applies when X1 = 0 and E � E1.

The coordinates at the jumping point are then given by

x�i =

(
� [2 (E �E1)]

1=2
if i = 1;

�i

�i��1
Xi if i 6= 1:

(41)

The two possible signs of x�1 give rise to two points of
minima with the same value of W ,

W � = �1E �
�1

2

MX
i=2

�iX
2
i

�i � �1
: (42)

There are two symmetrical minima, in contrast to the
second case, discussed below, when the global minimum
is single.
Case II This case applies when X1 6= 0 or when X1 =

0 and E < E1. The coordinates at the jumping point are
given by Eq. (34):

x�i =
�i

�i � ��
Xi;

where �� is the minimal root of the equation:

1

2

X
i

�
�i

�i � �

�2

X2
i = E: (43)

C Discussion

In a radiative vertical transition, only displaced modes
are excited. The initial conditions for dynamics on the
accepting potential energy surface, which we call the
jumping point are then given by:

x�i = Xi; (44)
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The energy that goes into vibration and the value of the
logarithm of the Wigner function at the jumping point
are then given respectively by:

E0 =
1

2

MX
i=1

�2iX
2
i ; (45)

W0 =
1

2

MX
i=1

�iX
2
i : (46)

Energy is conserved because the photon takes the rest of
the energy

Ephoton = E �E0; (47)

where E is the energy gap between minima of the donor
and accepting surfaces.
In a radiationless transition there is no photon. The

released electronic energy must become vibrational en-
ergy. The two cases I and II di�er in how this energy is
distributed between the di�erent vibrations.
In case I, one of the vibrational degrees of freedom

replaces the photon. Despite the fact that X1 = 0,
i.e. there is no displacement along the x1 direction in
phase space (be it a coordinate or a momentum), x1 is
an accepting mode for this transition because the initial

phase-space quasidistribution is the widest in this direc-

tion, in normalized phase-space coordinates for which the
accepting hypersurface in phase-space is a multidimen-
sional sphere. We shall refer to x1 as the major accepting
mode.
In contrast, case II does not look essentially di�erent

from a vertical transition. Namely, only displaced modes
are involved in the transition, and the jump for each co-
ordinate involved is proportional to this mode's displace-
ment. No momentum jumps exist, since the hamiltonians
are never displaces along a momentum phase-space coor-
dinate. The smaller is ��, the closest is the transition
to a vertical one, as �i=(�i � ��) is closer to 1. Physi-
cally a small lambda corresponds to the special case when
HF (X) = E.

D Dependence on the energy gap

In case I the dependence on the energy gap is triv-
ial. All the phase-space coordinates at the jumping point
but one do not depend on the energy gap but only on
their respective displacements and the relative di�erence
of widths between each one of them and the major ac-
cepting mode. x1, the jumping coordinate of the major
accepting mode grows with the energy gap. The larger
is the energy gap - the more important is this accepting
mode.
In order to consider the properties of the jumping point

as a function of the energy gap E in case II, for both
limits of small and large E Eq. (43) is rewritten here in

a simpli�ed form

MX
i=1

�
�i

�i � �

�2

= 1; (48)

where �i = �i jXij (2E)
�1=2

.
For a small energy gap, Eq. (48) has two real roots

� = �
�P

�2
i

�1=2
. The solution corresponding to the

minimal (negative) root asymptotically behaves as

�� = � (E0=E)
1=2

; (49)

x�
i
= �iXi (E=E0)

1=2
; (50)

W � =W0 � 2 (EE0)
1=2

: (51)

In the limit of a large energy gap, when �i ! 0, Eq.
(48) has 2M roots � = �i � �i, (i = 1; 2; :::;M). The
minimal root corresponding to the minimum ofW is �� =
�1 � �1. It is clear that X1 = 0 belongs to the case
I for suÆciently large E. A perturbative solution, with
" = signX1(2E)

�1=2 as a small parameter shows that for
X1 6= 0 as well, although �� depends on the energy, this
dependence approaches zero for a large enough energy
gap, for which:

x�1 �
p
2E sign(X1); (52)

x�i6=1 =
�i

�i � �1
Xi

�
�i�1

(�i � �1)
2

jX1jXip
2E

+O("2): (53)

Here, again, in the limit of a large energy gap x1 is the
major accepting mode regardless of its being displaced or
not. If the displacement X1 = 0 there are two jumping
points with opposite signs, while if X1 6= 0 the sign of
the jump is determined by the sign of the displacement.

IV. SIMPLE CASES

In the previous section a complete solution in the har-
monic approximation was derived. For any given radi-
ationless transition the accepting mode(s) can be found
by applying this procedure. To gain some intuition, we
apply it here to some simple examples. We separately
check the inuence of the frequencies, Duchinsky rota-
tions, and the displacements, on the results. We also
check the predictive power of the results on the energy
distribution between the modes, for an example where
this energy distribution is well de�ned.

A Frequencies

In the simplest case, when the normal coordinates
of the initial and the �nal states are the same (q =
q0, p = p0) and mi = m0

i
, the set of variables
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fx1; x2; :::; xMg consists of
p
mi!iRi and 1=

p
miPi, and

the set f�1; �2; :::; �Mg consists of !0

i
=!2

i
and 1=!0

i
sorted

in ascending order. Since E1 = 0, this system belongs
to the case I considered in the previous section, with
x�1 = �

p
2E and x�2 = x�3 = ::: = x�

M
= 0. There is only

one accepting mode. In terms of normal mode coordi-
nates it means that if the minimum number in the set
f!0

i
=!2

i
; 1=!0

i
g is �1 = !0

i0
=!2

i0
, then the launching point

for the transition is at Ri0 = � (2E=mi0)
1=2

=!i0 and the
other coordinates and momenta are zero. If �1 = 1=!0

i0
,

then Pi0 = � (2Emi0)
1=2

and the other coordinates and
momenta are zero.

B Duchinsky rotation

Now, suppose that q0 = 0 and mi = m0

i
= m,

N = 2, and the matrix S is a unitary matrix of a
general form S =

� cos' sin'
� sin' cos'

�
, where ' is a rotation

angle. Then, f�1; �2; �3; �4g consists of the following

four numbers: fA �
�
A2 � a1a2

�1=2
; 1=!0

1; 1=!
0

2g, where
A = 1

2 (a1 + a2) cos
2 ' + 1

2 (b1 + b2) sin
2 ', a1 = !0

1=!
2
1,

a2 = !0

2=!
2
2 , b1 = !0

2=!
2
1, b2 = !0

1=!
2
2. If ' = 0,

then it is fa1; a2; 1=!0

1; 1=!
0

2g. If ' = �=2, then it is
fb1; b2; 1=!0

1; 1=!
0

2g.
The next example is numerical. It demonstrates that

a Duchinsky rotation can inuence the jumping point.
Suppose that q0 = 0 and mi = m0

i
= m, N = 3,

S =
� cos' sin' 0
� sin' cos' 0

0 0 1

�
, !1 = 0:6, !2 = 0:3, !3 = 0:603,

!0

1 = 0:595, !0

2 = 0:298, !0

3 = 0:6 (!0

i
were taken slightly

smaller than !i as it usually happens in molecules). De-
pendence of f�ig on ' is shown on Fig. 2. If ' <

0 0 .1 0 .2 0 .3 0 .4 0 .5
1 .5

1 .55

1 .6

1 .65

iα

ϕ

)0,( *
2

*
1 ≠qq

)0( *
1 ≠p

)0( *
3 ≠p

)0( *
3 ≠q

[ ] 2/1

21
2 aaAA −−

2
33 /' ωω

2
11 /' ωω

'/1 1ω
'/1 3ω

FIG. 2: Dependence of the smallest four eigenvalues �i,
i = 1; 2; 3; 4, on the rotation angle '. The rest of eigen-

values f1=!0

2; A+
�
A2 � a1a2

�1=2g are larger than 3. The
smallest eigenvalue �1 determines the minimum of W
(Wmin = �1E).

'c = 0:033, then only one phase space jumping coor-
dinate q�3 is nonzero, otherwise only two coordinates q�1
and q�2 are nonzero. Here, since �i are independent of
the energy, and because of the fact that dWmin=dE = �1,
Wmin = �1E, and the maximum of the Wigner function
on the surface of the constant energy is proportional to
exp(�2�1E).

C Displacements

Consider a simple case with non-zero displacement,
with N = 2, mi = m0

i
, and q0 = (Q; 0), i.e. q01 = q1 �Q,

q02 = q2. We de�ne:

�� =
!0

1

!21

"
1�

�
m1!

2
1Q

2

2E

�1=2
#
; (54)

� = min

�
��;

!0

1

!21
;
!0

2

!22
;
1

!0

1

;
1

!0

2

�
(55)

There are four sub-cases. (1) If � = 1=!0

1 or � = ��,
there is only one non-zero jumping coordinate

q�1;(1) = Q=(1� ��!
2
1=!

0

1): (56)

(2) If � = !0

2=!
2
2 then there are two non-zero jumping

coordinates q�1 and q�2 . (3) If� = 1=!0

1 then there are two
non-zero phase-space jumping coordinates q�1 and p

�

1. (4)
If � = 1=!0

2 then there are two non-zero phase-space
jumping coordinates q�1 and p�2.
The larger is the displacement and the smaller is the

energy gap, the smaller is lambda�, and q1 becomes the
only accepting mode. In contrast, in the limit of a very
large energy gap, the displacement no longer plays a role
in the minimization problem predicting the jump. In this
limit, the frequencies alone determine the jump as in the
previous case of zero diplacement.

D Predictive power of the jumping point

The later case with additional simpli�cations m1 =
m2 = 1 and !1 = !2 = 1 was considered in [2]. This
paper has plots of the initial wave function,

	I(q1; q2) =  0(q1 �Q) 0(q2) (57)

vs. the �nal wave function

	F(q1; q2) =

nX
j=0

Cj j(q1) n�j(q2) (58)

where  i(q) is a harmonic oscillator wave function, E =
n+ 1, and Cj is an overlap integral between the ground
state 	I and the excited wave function  j(q1) n�j(q2).
It was demonstrated that the pattern of the �nal

wave function depends on the position of the phase-
space jump. Here, we reconsider six numerical examples
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from the paper [2] by a quantitative comparison with the
phase-space results. We calculate partial energies of ex-
citations along two di�erent modes,

E1 = P�1
E

nX
j=0

C2
j

�
j + 1

2

�
;

E2 = P�1
E

nX
j=0

C2
j

�
n� j + 1

2

�
;

where PE =
Pn

j=0 C
2
j
is the total probability of a tran-

sition to EF = E. E1 and E2 are well de�ned physical
observables because the two dimensional harmonic oscil-
lator here considered is seperable along q1 and q2. They
can be calculated exactly and compared to their phase-
space counterparts

E�

1 = 1
2

�
p�1

2
+ q�1

2
�
; E�

2 = 1
2

�
p�2

2
+ q�2

2
�
;

where x�1, p
�

1, x
�

2, p
�

2 are the phase space coordinates of
the jump. We compare the percentage of energy going
into the �rst mode, exact vs phase-space result,

R1 = E1=E; R�

1 = E�

1=E (59)

Table I shows that R1 and R�

1 agree within 10% for all
examples with N � 20.

V. ANHARMONICITY

In this section we study the e�ect of anharmonicities on
the jump. We consider anharmonic potential surfaces for
the donor's and acceptor's Hamiltonians, focusing here
on Hamiltonians of harmonic oscillators perturbed by
cubic anharmonic terms as in Eqs. (11) and (12). Gen-
eralization to any polynomial anharmonicity is straight
forward.

A The ground-state Wigner function for an

anharmonic oscillator

Given the Hamiltoniam (12) we are looking for W1 of
Eq. (21): the leading order anharmonic correction to the
ground state Wigner function. We do so by expanding:

S(q) � � ln	(q) = S0(q) + �S1(q) +O(�2); (60)

E = E0 + �E1 +O(�2); (61)

where � is a small parameter of the same order as fijk ,
and the zero-order terms are:

S0(q) =
1

2

NX
i=1

!iq
2
i (62)

E0 =
1

2

NX
i=1

!i: (63)

We omit the primes in this subsection, although we have
in mind the excited donor surface which was marked by
primed variables in the previous and subsequent sections.
Rewriting the Scr�odinger equation in terms of the func-
tion S(q) [6] gives the equation:

�
1

2

NX
i=1

�
@S

@qi

�2

+
1

2

NX
i=1

@2S

@q2
i

+ V (q)�E = 0 ; (64)

where V (q) is the potential. Without the second sum,
Eq. (64) reduces to the Hamilton - Jacobi equation for
the action of a classical particle moving in the potential
E � V (q). In such a quasiclassical limit, a perturbation
theory for S(q) is easily developed [6]. The more gen-
eral quantum case which is considered here is still solv-
able analytically, but the corrections obtained have more
monomial terms.
To �rst order in the perturbation, Eq. (64) reduces to

a linear equation with respect to the number E1 and the
function S1(q):

�
NX
i=1

@S0

@qi

@S1

@qi
+

1

2

NX
i=1

@2S1

@q2
i

+ V1(q)�E1 = 0 ; (65)

where V1(q) is the cubic anharmonic part of the potential:

V1(q) =
1

6

NX
i;j;k=1

fijkqiqjqk; (66)

Let us suppose that S1(q) is a polynomial, then ,as
soon as the inhomogeneous part of Eq. (65) , V1(q)�E1,
is a third degree polynomial, it may be shown that the
solution is at most a third degree polynomial too,

S1(q) =

NX
i=1

Aiqi +
1

2

NX
i;j

Bi;jqiqj +
1

6

NX
i;j;k=1

Ci;j;kqiqjqk :

(67)

We substitute Eq. (67) and Eq. (66) in Eq. (65) and solve
to obtain:

E1 = 0;

Ai =
1

2!i

NX
j=1

fi;j;j
!i + 2!j

;

Bi;j = 0 ;

Ci;j;k =
fi;j;k

!i + !j + !k
: (68)

Having calculated S1, we would like to calculate the
ground-state Wigner function expanded in powers of �,

�(q;p) = �0(q;p) + ��1(q;p) +O(�2); (69)

where �0(q;p) is the harmonic-oscillator ground-state
Wigner function, and �1(q;p) is the �rst anharmonic
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TABLE I: Accuracy of prediction by the phase-space method of the partition of energy between di�erent modes for

the model of two coupled harmonic oscillators, HI =
1
2 (p

2
1 + p22 + q21 + q22), HF = 1

2 (!
0

1
2
p21 + !0

2
2
p22 + (q1 �Q)2 + q22)

for examples studied earlier in [2]. Percentage of energy going to the �rst mode is given by Eq. (59).

Parameters R1 (%)

!0

1 !0

2 Q n = 2 n = 6 n = 12 n = 20 n = 30

0.02 0.18 0 60.4 74.0 82.5 91.6 94.5

100.0a 100.0a 100.0a 100.0a 100.0a

10 2.2 0 71.8 87.8 93.8 96.3 97.5

100.0a 100.0a 100.0a 100.0a 100.0a

0.45 0.01 0 25.3 10.4 5.4 3.3 2.2

0.0a 0.0a 0.0a 0.0a 0.0a

2 18 0 24.8 10.1 5.2 3.2 2.2

0.0a 0.0a 0.0a 0.0a 0.0a

2 0.1 3 82.6 82.0 44.9 27.2 18.3

100.0a 71.2a 38.4a 23.7a 16.1a

2 10 3 82.6 82.0 44.9 27.2 18.3

100.0a 71.2a 38.4a 23.7a 16.1a

aThe phase space result R�

1
.

correction to be determined here. Substituting the per-
turbed wavefunction

	(q) = [1� �S1(q)] exp (�S0(q)) +O(�2) ; (70)

in the de�nition of the Wigner function, we get

�(q;p) �
�

1

2�

�N Z
d�e�ip��

� [1� �S1(q + �=2)� �S1(q � �=2)]
� exp [�S0(q + �=2)� S0(q � �=2)] (71)

� �0(q;p) exp(��W1) (72)

where

�0(p; q) =
1

�N

NY
i=1

exp

�
�
p2
i

!i
� !iq

2
i

�
; (73)

and, using Eq. (68) ,

W1 =
X
i;j

fi;j;j

2!i!j
qi

+
X
i;j;k

fi;j;k

!i + !j + !k

�
qiqjqk

3
�
qipjpk

!j!k

�
; (74)

�
1

6

X
i;j;k

�ijkxixjxk (75)

B Anharmonic e�ects on the jump

Eqs. (24) are solved here by perturbation theory, for
the functions H = H(0) + H(1)�, W = W (0) + W (1)�,

where

H(0) =
1

2

X
i

x2i ; H(1) =
1

6

X
i;j;k

fijkxixjxk; (76)

W (0) =
1

2

X
i

�i�x
2
i
; W (1) =

1

6

X
i;j;k

�ijk�xi�xj �xk : (77)

As before, xi are variables collecting coordinates and mo-
menta, �xi = xi �Xi, Xi are the corresponding displace-
ments, and � is a perturbation parameter. Eq. (24) is
equivalent to

�i�xi +
�

2

X
j;k

�ijk �xj �xk = �

0@xi + �

2

X
j;k

fijkxjxk

1A ;

(78)

1

2

X
i

x2
i
+
�

6

X
i;j;k

fijkxixjxk = E: (79)

The unknown variables xi (i = 1; :::;M) and the La-
grange multiplier � are searched in the form

xi = x
(0)
i

+ x
(1)
i
� + o(�); (80)

� = �(0) + �(1)� + o(�): (81)

In the zero order approximation (� = 0), Eq. (78), (79)
are

�i�x
(0)
i

= �(0)x
(0)
i
;

1

2

X
i

x
(0)2
i

= E;
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where �x
(0)
i

= x
(0)
i
�Xi. In the �rst order in �, Eq. (78),

(79) are

�ix
(1)
i

+
1

2

X
j;k

�ijk�x
(0)
j

�x
(0)
k

=

�(0)

0@x(1)
i

+
1

2

X
j;k

fijkx
(0)
j
x
(0)
k

1A+ �(1)x
(0)
i
; (82)

X
i

x
(0)
i
x
(1)
i

+
1

6

X
i;j;k

fijkx
(0)
i
x
(0)
j
x
(0)
k

= 0: (83)

Let us �nd the �rst correction to the harmonic approxi-
mation for the two case discussed above using these for-
mulas.
Case (1) The unperturbed coordinates are given in

this case by by Eqs.(41) while the unperturbed Lagrange
multiplier is �(0) = �1. It then follows from (82) for i = 1
that

�(1) =
1

2x
(0)
1

X
j;k

�
�1jk�x

(0)
j

�x
(0)
k
� �1f1jkx

(0)
j
x
(0)
k

�
; (84)

and from (82) for i 6= 1 that

x
(1)
i

=
1

�i � �1

�
1

2

X
j;k

�
�1fijkx

(0)
j
x
(0)
k
� �ijk�x

(0)
j

�x
(0)
k

�
+ �(1)x

(0)
i

�
; i 6= 1: (85)

Finally, the remaining unknown variable x
(1)
1 can be

found by substituting (??) into (83),

x
(1)
1 =

1

x
(0)
1

24X
i 6=1

�x
(0)
i
x
(1)
i

+
1

6

X
i;j;k

fijkx
(0)
i
x
(0)
j
x
(0)
k

35 :
(86)

In zero order (harmonic approximation), there are two
points of minimum di�ering by a sign of x1 with the same
Wmin given by (42). In the �rst order approximation,
Wmin is given by (89), and it is no lonker the same for
the two points, corresponding to di�erent signs in Eq.
(??). So, a true minimum is the one foz which (89) is
smaller.
Case (2) In this case the unperturbed coordinates and

Lagrange fultiplier are given by Eqs. (34,43). It follows
from (82) that

k
(1)
i

=
1

�i � ��

�
1

2

X
j;k

�
��fijkx

(0)
j
x
(0)
k
� �ijk�x

(0)
j

�x
(0)
k

�
+ �(1)x

(0)
i

�
; (87)

Inserting (87) into (83), we �nd

�(1) =
1

6

 X
i

x
(0)2
i

�i � ��

!�1X
i;j;k

x
(0)
i

�i � ��

�
3�ijk�x

(0)
j

�x
(0)
k

� 2(�� + �i)fijkx
(0)
j
x
(0)
k

�
; (88)

Finally, expanding the minimum value of the constrained

function W into power series Wmin = W
(0)
min +W

(1)
min� +

O(�2), we �nd that W
(0)
min is given by Eq. (37), and

W
(1)
min =

X
i

�i�x
(0)
i
x
(1)
i

+
1

6

X
i;j;k

�ijk�x
(0)
i

�x
(0)
j

�x
(0)
k
: (89)

C Simple examples

Suppose that

V 0

1(q
0) =

NX
i=1

fiq
3
i
; (90)

then....

VI. SUMMARY AND CONCLUSIONS
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