Overlap integrals 1

Comparison with exact overlap integrals

Here, we calculate overlap integrals between two harmonic-oscillator eigenfunctions and
compare results with above estimations found by projecting Wigner transform onto the energy
surface.

Propensity rules are not of our concern here because the initial and final states are defined in
advance. Without loss of generality one can consider one-dimensiona oscillator. For many-
dimensional harmonic oscillator, matrix elements can be found as a product of one-dimensional

integrals.
Overlap integral at E=0

A donor and an acceptor Hamiltonians are

H :%[PZ +(I)(O)2(Q_Q(O))2] o
30

H® :l[Pz +w(1)2(Q_Q(1) )2]
2

(weset m=1). Schematically, the potentials are shown below
@ V

Q(l) Q0 Q

Since acceptor energy surface shrinks to one point at the potential bottom, both acceptor and donor

arein aground state,
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g = E’d—n exp% > Q-0 E
and the overlap integral is
P wOe®) M 0@
A= _J'lﬂ Q™ (Qdg=+2 —(a)((o) AT guz exp%%_w(o) —5 (Q(o) —QW )2% (32)

According to the method of Wigner transform, A® is approximated by the function p(P,Q) at

accepting point (P,Q) =(0,Q"). There, W =-1Inp =1® (Q(O) -QW )2. However according to

exact calculations, the exponential factor —1InA® is different, 1
w

(32). For example, if frequencies are equal, the former exponential factor istwo times larger than the
latter one. If the frequency w'® islarge, then the factors are almost the same. By doing projection of

the Wigner-function on the accepting point we are approximating in effect the acceptor

wavefunction by o -function, ¢® (Q) =56(Q-QY).

Quasiclassical overlap integral
Generally, an overlap integra can be estimated quasiclassically, without a pre-factor, as an

exponent of integral of action over forbidden region which is a sum of S and S, see a figure
below.
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It is easy to see that S, is aways larger that the sum of S and S . So, the logarithm of Wigner-
function is aways larger than the quasiclassical exponentia factor (as long as momentum of the

accepting point is zero).
When the transition is almost alowed classically (so caled reflection approximation), then

S® >>sS® seeafigure below,

\Vj ()
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and there is good agreement with quasiclassical approximation. This inequality generally holds when

derivative of V ismuch larger than derivative of V@ at the point of crossing of potentials.
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Direct calculation of an overlap integral between two harmonic-

oscillator wave functions

Since the harmonic oscillator is an exactly solvable problem, we can estimate explicitly an

overlap integral between two wavefunctions ¢, (x) = ¢, (w,,x) and ¢, (X) = ¢, (w,,x—a) where

¢, (w,x) = B—H exp(—%wleh)Hn(x\/m) (1)

2n/2\/_

is an eigenfunction of a harmonic oscillator. Here, ,(x) is a ground-state wavefunction of the
donor state, Y, (x) is an excited-state wavefunction of the acceptor state, and a is a shift along x-

axis between bottoms of harmonic potentials. one in order to

consider later aquasiclassical limit # - 0. We calculated the overlap integral
n (@0, 8) = [P, (X, (X)ax @)

for successively increasing n, by Mathematica software and finally we guess a genera formula

(valid for any n,):

114, 1/4 2 12] o0y 1 2+1/ 2-2i , = /2
_ 1/2 Wy Wy a- wy,w 2" i h
I, (g, 0,,8) = (nY)* ——= exp%%— e %‘Z _(0? ~0?) E N )

(wo+w1) h W, +w 0% iY(n - 2)! [ANNAY

where [n, /2] is the largest integer smaller or equal to n, /2. We tested that the formula (3) for al

< 20, and we expect that it isvalid for arbitrary n,.
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h - 0 limit

Let us estimate the quasiclassical limit of the overlap integral by substituting n, = E/(fico,) into

the expression (3) and setting 72 — 0.
Equal frequencies

Consider firstly the case w, = w, = w . Because of presence of successive powers of (wf - wg)

in (3), thereis only one nonzero term in the sum, and

1, (w,w,a) = (n)™* %%‘ exp% a4;)% (4)

Using Stirling formulafor the factoria in (4), we find

ho H E O a%*  [Bw’
I, (w,w,a) ] B— ex - +1In 5
n{ ) O EQnE@ pH mg’ 2E  H2E ©)
D 2,.2 2,.2
The exponential factor Eg— aw +InFla @ isthe same as the integral of action that was
2w 2E  [2E

mentioned in a previous section.
Unequal frequencies

Now, let us consider much more complicated case w, < w,. In this case, there are two

intersections of the potential curves, see afigure below.
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Let us define afunction

_[n/2] c i 1
fem= 3 L iz ©

(the sum (6) can be expressed through confluent hypergeometric function U(a,b,z) as

(-2n/c)"?nlU (-n/21/2,-2n/c), but this expression is not used here). We estimate the function

[n/2]

(6) for large n by replacing the sum by an integral Iexp(— g(x))dx where
0

a(x) =-In(2m) + {Inn-In(c/8) +InX] + x—n+ 3 InXx+3In(n - 2x) + (n— 2X) In(n — 2X).. (7)

After expanding the exponent around the point X, :%(\/1+c—1)2n/c, which is close to its

minimum, we estimate the integral as

iexp(— (D + 0, (X— %) + G, (X = %) Jox = %exp% do +%% (8)

We expand coefficients: g, =(n-1)Inn+ng{® +g{ +0O(%), g, =0(), g, =g )+ O(n—lz) and

n n

after inserting them into (8) we estimate it as
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-n-1/2

Jr

f(en) ~"—C,exp(An), 9)

where C, = exp(ggl)) and A=g{?. Inserting there expressions for expansion coefficients

(0)
0

(which are omitted here), we find:

Co=3 0
%(Cl -0 (10)

where ¢, = (1+¢)"?. Eq. (9) was proven for positive ¢, but numerical tests show that it is correct for
awider range ¢ > -1, athough a proof for the range —1< ¢ <0 is unknown. Numerical tests show

that for c < -1, amodified Eq. (9) holds,

-n-1/2

N

f (c,n) ~ 2Re(C, exp(An)), (93)

where C,, A, and ¢, are defined by the same formulas (10). In these formulas, one should choose

any branch of (1+c)"?, any branch of In%ﬁ% and a branch with a positive real part of
Cl —

/12
%D . Approximations (9) and (9a) became poorer as ¢ —» —1. A specia case of c=-1
1\C ) [0
remains to be studied.
Now, let us use Eq. (9) to estimate the overlap integral. Using (3) and Stiltjes formulafor n!, it

can be expressed through the function (6) as

1/4, .1/4 2
(@, 0;,0) = (2\/ 2m(n/ e)”)”2 %em%%%wwﬁ) Ezazwgwl/h)“’z f(cn). (11
0 1 0 1
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with

o = 2wy ~ ;)

12
a’wlw, (12)
Using (9), we find
0 N
I, (@, @y, 8) = (2m) 4K L+ k) ™2 0 exp(-n),

(Cl_l)D _ (13)

k-1

S=k/c-c//c+In(c,-D) -LIn[c—=

/et -) it d

where ¢ given by (12), ¢, =(1+c)"?, and k=w,/w,. Note that in a quasiclassica limit

o= 2B ~ap)

a’wlw’

. Thefactor S should be the same as the total quasiclassical action S© +S®.

Results of calculations by the quasiclassical formula are shown in the following table. There,

we put n=100, 7 =0.01, and w,, w,, a to random numbersin [0,1] interval.
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.57457
.07629
.17852
.81800
.63402
.03405
.98540
.64887
.35771
.28944
.86545
.66755
.44748
.91323
.33982
.88679
.09815
.09774
.49406
.84997
.86930
.03382
.89555
.99275
.92716
.79600
.63848
.62219
.34281
.92079
.94697
.33469
.90919
.95015
.68391
.25067
.82538
.17307

.81652
.38154

O O OO O OO O O O O O O O O O O O OO0 O O OO0 O O OO0 O oo oOoO oo o oo

. 76515
.65783
.08602
.93198
.23278
.05934
.16032
.93633
.88372
.69988
.20341
.93347
.43477
.38814
.75291
.40349
.00307
.39827
.89433
.56059
.41520
.48116
.28091
.49205
.98968
.52889
.90167
.07789
.20699
.86165
.63988
.45492
.34501
.38030
.04848
.60602
.04368
.96373

.53319
.36160

O O OO O OO O O O O O O O O O O O OO0 O O OO0 O O OO0 OO oo oO oo o oo

.89235
.39817
.61838
.25614
.60826
.89911
.93228
.36573
.04398
.48555
.08150
.94728
.32522
.53566
.45586
.38718
.35952
.51752
.31677
.94705
.23537
.87954
.02531
.89374
.13254
.47216
.21211
.95462
.84252
.32744
.83634
.74614
.32238
.87285
.16819
.09386
.76349
.71624

.12739
.78705
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In(w01w11a)

1.04325x% 108
0.000109219
~6.6607x 1024
1.27715x% 10-37
2.92796x% 10-17
2.24516x 1021
-5.2161x 108
.8282x 1021
.9163x 10-19
.2442 % 10-11
.0847x 10-12
.0000128217
.5197x 10-76
.56263x 10-20
.75723x 10-12
.62264 % 10-22
~0.0068781
5.1047x 10-8
6.9944 % 10-18
-6.0991x10-23
1.10585x 10-23
0.0103642
-8.7258x10-16
-2.80426x 10-19
7.7752 % 1057
2.19444 % 10-33
1.01601x 10-28
1.20166x 106
-8.6559% 1029
2.00982x 10-60
8.3385x 10-2
8.2569x 10-17
-2.13439%x 1018
7.1358x 1017
0.000086255
1.01636x 10-18
~0.00081810
0.00129971

6.4837x 10-36
1.91938%x 103

D N R OO oY W W

I, (¢, 0, ) -quasicl.

1.04400x 10-8
0.000109351
~6.6701x 1024
1.27840x 10-37
2.93199x 10-17
2.24779% 10-21
-5.2227x10-8
.8322x 10-21
.8994 x 10-1°
.2491x 10-11
.0922 % 10-12
.0000128307
.5299% 10-76
.56651x 10-20
.76038x 10-12
.62695x 1022
~0.0068867
5.1109x 10-8
7.0024 x 10-18
~6.1179% 1023
1.10718x 1023
0.0103769
~8.7366x10-16
~2.80959x% 10-1°
7.7833x 10-57
2.19875% 10-33
1.01717x 1028
1.20324x 10
-8.6709x 1029
2.01753x 10-60
8.3550x 10-2
8.2644 % 1017
-2.13726x10-18
7.1435x% 1017
0.000086360
1.01753x 10-18
~0.00081918
0.00130125

6.4887x 1036
1.95664%x 1035

N N P OOy W W
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For c< -1, wetakereal part and double the result of (13), according to Eqg. (9a).
Conclusions

There exist several basic differences between phase space distribution approach and
guasiclassical approach. The former approach approximates a positive quantity of square of an
overlap integral, while the latter approach approximates an integral itself. If there are no potential
2ni(wf — w?)

a‘wyw,

function of 1/7 due to presence of an imaginary part in S, but the phase-space approximation gives

curve crossings (when c = <-1), then an overlap integra is a rapidly oscillating

a smooth function. Finaly, the phase-space approximation is always smaller (at least for cases
depicted on above figures) because the exponent is larger, but this error can be corrected in principle
by taking into account the derivative of the potential of an acceptor surface which is equivalent to

approximating of the Wigner density by Airy function instead of J -function.
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