Reconsidering the model of two coupled harmonic oscillators

Hamiltonian of the model

This model Hamiltonian is from the paper of B. S. and E. J. H., J. Chem. Phys. 112, 4004. The acceptor Hamiltonian is

$$
H_{\mathrm{f}}=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}+x^{2}+y^{2}\right),
$$

and the donor Hamiltonian is

$$
H_{\mathrm{i}}=\frac{1}{2}\left\lfloor p_{x}^{2}+p_{y}^{2}+\omega_{x}^{2}\left(x-x_{0}\right)^{2}+\omega_{y}^{2}\left(y-y_{0}\right)^{2}\right] .
$$

The final-state wave function is defined according to the formula

$$
\Psi_{\mathrm{f}}(x, y)=\sum_{j=0}^{n} C_{j} \psi_{j}(x) \psi_{n-j}(y),
$$

where

$$
\begin{aligned}
\psi_{i}(q) & =\pi^{-1 / 4} \frac{1}{2^{i / 2} \sqrt{i!}} \exp \left(-\frac{1}{2} q^{2}\right) H_{n}(q), \\
C_{j} & =I_{j}\left(\omega_{x}, 1, x_{0}\right) I_{n-j}\left(\omega_{y}, 1, y_{0}\right),
\end{aligned}
$$

and

$$
I_{n_{1}}\left(\omega_{0}, \omega_{1}, a\right)=\left(n_{1}!\right)^{1 / 2} \frac{\omega_{0}^{1 / 4} \omega_{1}^{1 / 4}}{\left(\omega_{0}+\omega_{1}\right)^{n_{1}+1 / 2}} \exp \left(-\frac{1}{2} a^{2} \frac{\omega_{0} \omega_{1}}{\omega_{0}+\omega_{1}}\right)_{i=0}^{\left.n_{1} / 2\right]} \frac{2^{n_{1} / 2+1 / 2-2 i}}{i!\left(n_{1}-2 i\right)!}\left(\omega_{1}^{2}-\omega_{0}^{2}\right)^{i}\left(a^{2} \omega_{0}^{2} \omega_{1}\right)^{n_{1} / 2-i} .
$$

Revising examples from the paper

There are 6 examples considered in the paper, but no comparison with phase-space results.
Now for those examples, we calculate partial energies

$$
E_{x}=\left(\sum_{j=0}^{n} C_{j}^{2}\right)^{-1} \sum_{j=0}^{n} C_{j}^{2}\left(j+\frac{1}{2}\right), E_{y}=\left(\sum_{j=0}^{n} C_{j}^{2}\right)^{-1} \sum_{j=0}^{n} C_{j}^{2}\left(n-j+\frac{1}{2}\right),
$$

and their classical counterparts

$$
E_{x}^{*}=\frac{1}{2}\left(p_{x}^{* 2}+x^{* 2}\right), E_{y}^{*}=\frac{1}{2}\left(p_{y}^{* 2}+y^{* 2}\right),
$$

where $p_{x}^{*}, x^{*}, p_{y}^{*}, y^{*}$ are phase space coordinates of minimum of Wigner function.

Figure	Parameters	$\begin{aligned} & R_{x}(\%) \\ & n=2 \end{aligned}$	$\begin{gathered} R_{x}(\%) \\ n=6 \end{gathered}$	$\begin{aligned} & R_{x}(\%) \\ & n=12 \end{aligned}$	$\begin{aligned} & R_{x}(\%) \\ & n=20 \end{aligned}$	$\begin{aligned} & R_{x}(\%) \\ & n=30 \end{aligned}$
1	$\begin{aligned} & \omega_{x}=0.02, \\ & \omega_{y}=0.18, \\ & x_{0}=y_{0}=0 \end{aligned}$	$\begin{gathered} 60.4 \\ 100.0^{*} \end{gathered}$	$\begin{gathered} 74.0 \\ 100.0^{*} \end{gathered}$	$\begin{gathered} 82.5 \\ 100.0^{*} \end{gathered}$	$\begin{gathered} 91.6 \\ 100.0^{*} \end{gathered}$	$\begin{gathered} 94.5 \\ 100.0^{*} \end{gathered}$
2	$\begin{gathered} \omega_{x}=10, \\ \omega_{y}=2.2, \\ x_{0}=y_{0}=0 \end{gathered}$	$\begin{gathered} 71.8 \\ 100.0^{*} \end{gathered}$	$\begin{gathered} 87.8 \\ 100.0^{*} \end{gathered}$	$\begin{gathered} 93.8 \\ 100.0^{*} \end{gathered}$	$\begin{gathered} 96.3 \\ 100.0^{*} \end{gathered}$	$\begin{gathered} 97.5 \\ 100.0^{*} \end{gathered}$
3	$\begin{aligned} & \omega_{x}=0.45, \\ & \omega_{y}=0.01, \\ & x_{0}=y_{0}=0 \end{aligned}$	$\begin{gathered} 25.3 \\ 0.0^{*} \end{gathered}$	$\begin{aligned} & 10.4 \\ & 0.0^{*} \end{aligned}$	$\begin{gathered} 5.4 \\ 0.0^{*} \end{gathered}$	$\begin{gathered} 3.3 \\ 0.0^{*} \end{gathered}$	$\begin{gathered} 2.2 \\ 0.0^{*} \end{gathered}$
4	$\begin{gathered} \omega_{x}=2 \\ \omega_{y}=18 \\ x_{0}=y_{0}=0 \end{gathered}$	$\begin{gathered} 24.8 \\ 0.0^{*} \end{gathered}$	$\begin{aligned} & 10.1 \\ & 0.0^{*} \end{aligned}$	$\begin{gathered} 5.2 \\ 0.0^{*} \end{gathered}$	$\begin{gathered} 3.2 \\ 0.0^{*} \end{gathered}$	$\begin{gathered} 2.2 \\ 0.0^{*} \end{gathered}$
5	$\begin{gathered} \omega_{x}=2 \\ \omega_{y}=0.1 \\ x_{0}=3, y_{0}=0 \end{gathered}$	$\begin{gathered} 82.6 \\ 100.0^{*} \end{gathered}$	$\begin{gathered} 82.0 \\ 71.2^{*} \end{gathered}$	$\begin{gathered} 44.9 \\ 38.4^{*} \end{gathered}$	$\begin{gathered} 27.2 \\ 23.7^{*} \end{gathered}$	$\begin{aligned} & 18.3 \\ & 16.1^{*} \end{aligned}$
6	$\begin{gathered} \omega_{x}=2, \\ \omega_{y}=10, \\ x_{0}=3, y_{0}=0 \end{gathered}$	$\begin{gathered} 82.6 \\ 100.0^{*} \end{gathered}$	$\begin{gathered} 82.0 \\ 71.2^{*} \end{gathered}$	$\begin{gathered} 44.9 \\ 38.4^{*} \end{gathered}$	$\begin{gathered} 27.2^{*} \\ 23.7^{*} \end{gathered}$	$\begin{gathered} 18.3 \\ 16.1^{*} \end{gathered}$

Quantities that are compared are percentage of energy going to x-mode, exact versus quantum,

$$
R_{x}=E_{x} / E, R_{x}^{*}=E_{x}^{*} / E,
$$

where $E=n+1$. It was found (see a table above) that R_{x} and R_{x}^{*} agree within 10% for all examples for $n \geq 20$. Note that examples 5 and 6 are equivalent in respect to interchange of y and p_{y}.

New examples

Several new examples with randomly chosen parameters of potentials were considered. Generally, there is some correlation between quantum and phase-space partitions of the energy. For some examples, agreement appears very good or very bad, see the table below.

Agreement	Parameters	$R_{x}(\%)$ $n=2$	$R_{x}(\%)$ $n=6$	$R_{x}(\%)$ $n=12$	$R_{x}(\%)$ $n=20$	$R_{x}(\%)$ $n=30$	$R_{x}(\%)$ $n=31$
Worst	$\omega_{x}=0.04689$,	50.6	51.5	52.7	54.4	56.5	40.4
	$\omega_{y}=0.05555$,	50.5^{*}					
	$x_{0}=0.1519$,	75.0^{*}	86.5^{*}	91.9^{*}	94.6^{*}	96.2^{*}	96.3^{*}
Best	$y_{0}=0.2649$						
	$\omega_{x}=0.5707$,	50.82	50.76	50.36	49.84	49.27	
	$\omega_{y}=0.5647$,	51.36^{*}	50.85^{*}	50.32^{*}	49.78^{*}	49.24^{*}	
	$y_{0}=0.9740$,						

The first line in the table is a counterexample for the phase-space method. When n changes between 0 and 40, the percentage of energy going to x-mode changes between 50% and 59% for even n and between 35% and 42% for even n while phase space prediction changes between 55% and 97%. There is only 5% agreement for $n=0$. For larger n results disagree by more than 30% (except by 25% for $n=2$). It is interesting, that for this example the final wave function for large n collapses to a point close to the origin.

