Reconsidering the model of two coupled harmonic oscillators

Hamiltonian of the model

This model Hamiltonian is from the paper of B. S. and E. J. H., J. Chem. Phys. **112**, 4004. The acceptor Hamiltonian is

$$H_{\rm f} = \frac{1}{2} \left(p_x^2 + p_y^2 + x^2 + y^2 \right),$$

and the donor Hamiltonian is

$$H_{i} = \frac{1}{2} \left[p_{x}^{2} + p_{y}^{2} + \omega_{x}^{2} (x - x_{0})^{2} + \omega_{y}^{2} (y - y_{0})^{2} \right]$$

The final-state wave function is defined according to the formula

$$\Psi_{f}(x, y) = \sum_{j=0}^{n} C_{j} \psi_{j}(x) \psi_{n-j}(y),$$

where

$$\Psi_{i}(q) == \pi^{-1/4} \frac{1}{2^{i/2} \sqrt{i!}} \exp\left(-\frac{1}{2}q^{2}\right) H_{n}(q),$$

$$C_{j} = I_{j}(\omega_{x}, 1, x_{0})I_{n-j}(\omega_{y}, 1, y_{0}),$$

and

$$I_{n_{1}}(\omega_{0},\omega_{1},a) = (n_{1}!)^{1/2} \frac{\omega_{0}^{1/4}\omega_{1}^{1/4}}{(\omega_{0}+\omega_{1})^{n_{1}+1/2}} \exp\left(-\frac{1}{2}a^{2}\frac{\omega_{0}\omega_{1}}{\omega_{0}+\omega_{1}}\right) \sum_{i=0}^{n_{1}/2} \frac{2^{n_{1}/2+1/2-2i}}{i!(n_{1}-2i)!} (\omega_{1}^{2}-\omega_{0}^{2})^{i} (a^{2}\omega_{0}^{2}\omega_{1})^{n_{1}/2-i}$$

Revising examples from the paper

There are 6 examples considered in the paper, but no comparison with phase-space results. Now for those examples, we calculate partial energies

$$E_{x} = \left(\sum_{j=0}^{n} C_{j}^{2}\right)^{-1} \sum_{j=0}^{n} C_{j}^{2} \left(j + \frac{1}{2}\right), E_{y} = \left(\sum_{j=0}^{n} C_{j}^{2}\right)^{-1} \sum_{j=0}^{n} C_{j}^{2} \left(n - j + \frac{1}{2}\right),$$

and their classical counterparts

$$E_x^* = \frac{1}{2} \left(p_x^{*2} + x^{*2} \right), \ E_y^* = \frac{1}{2} \left(p_y^{*2} + y^{*2} \right),$$

where p_x^* , x^* , p_y^* , y^* are phase space coordinates of minimum of Wigner function.

Figure	Parameters	$R_{x}(\%)$	$R_x(\%)$	$R_{x}(\%)$	$R_x(\%)$	$R_x(\%)$
1 19410		<i>n</i> = 2	<i>n</i> = 6	<i>n</i> = 12	<i>n</i> = 20	<i>n</i> = 30
1	$\omega_x = 0.02,$	60.4	74.0	82.5	91.6	94.5
	$\omega_y = 0.18,$ $x_0 = v_0 = 0$	100.0^*	100.0^*	100.0^*	100.0^*	100.0^*
2	$\omega_x = 10,$	71.8	87.8	93.8	96.3	97.5
	$\omega_y = 2.2$,	100.0^*	100.0^*	100.0^{*}	100.0^*	100.0^*
	$x_0 = y_0 = 0$					
3	$\omega_x = 0.45,$	25.3	10.4	5.4	3.3	2.2
	$\omega_{y}=0.01,$	0.0^{*}	0.0^{*}	0.0^{*}	0.0^{*}	0.0^{*}
	$x_0 = y_0 = 0$					
4	$\omega_x = 2$,	24.8	10.1	5.2	3.2	2.2
	$\omega_y = 18$,	0.0^{*}	0.0^{*}	0.0^{*}	0.0^{*}	0.0^{*}
	$x_0 = y_0 = 0$					
5	$\omega_x = 2$,	82.6	82.0	44.9	27.2	18.3
	$\omega_{y}=0.1,$	100.0^{*}	71.2^{*}	38.4*	23.7^{*}	16.1*
	$x_0 = 3, y_0 = 0$					
6	$\omega_x = 2,$	82.6	82.0	44.9	27.2	18.3
	$\omega_{y} = 10$,	100.0^{*}	71.2*	38.4*	23.7^{*}	16.1*
	$x_0 = 3, y_0 = 0$	10010	/ 1.2	2011	2011	1011

Quantities that are compared are percentage of energy going to x-mode, exact versus quantum,

$$R_{x} = E_{x} / E, R_{x}^{*} = E_{x}^{*} / E,$$

where E = n + 1. It was found (see a table above) that R_x and R_x^* agree within 10% for all examples for $n \ge 20$. Note that examples 5 and 6 are equivalent in respect to interchange of y and p_y .

New examples

Several new examples with randomly chosen parameters of potentials were considered. Generally, there is some correlation between quantum and phase-space partitions of the energy. For some examples, agreement appears very good or very bad, see the table below.

Agreement	Parameters	$R_{x}(\%)$	$R_{x}(\%)$	$R_{x}(\%)$	$R_{x}(\%)$	$R_{x}(\%)$	$R_{x}(\%)$
		n = 2	<i>n</i> = 6	<i>n</i> = 12	n = 20	<i>n</i> = 30	<i>n</i> = 31
Worst	$\omega_x = 0.04689$,						
	$\omega_{y} = 0.05555$,	50.6	51.5	52.7	54.4	56.5	40.4
	$x_0 = 0.1519$,	75.0^{*}	86.5^*	91.9 [*]	94.6 [*]	96.2^{*}	96.3 [*]
	$y_0 = 0.2649$						
Best	$\omega_x = 0.5707$,						
	$\omega_{y} = 0.5647$,	50.82	50.76	50.36	49.84	49.27	
	$x_0 = 0.9740$,	51.36*	50.85^*	50.32^{*}	49.78^{*}	49.24^{*}	
	$y_0 = 0.9398$						

The first line in the table is a counterexample for the phase-space method. When *n* changes between 0 and 40, the percentage of energy going to *x*-mode changes between 50% and 59% for even *n* and between 35% and 42% for even *n* while phase space prediction changes between 55% and 97%. There is only 5% agreement for n = 0. For larger *n* results disagree by more than 30% (except by 25% for n = 2). It is interesting, that for this example the final wave function for large *n* collapses to a point close to the origin.