Finding constraint minima for separable anharmonic potential with cubic anharmonicity

Let us find minimum of the function

$$
\begin{equation*}
W=\sum_{n=1}^{N} \frac{\alpha}{2} x_{n}^{2} \tag{1}
\end{equation*}
$$

under the restriction $H=E$ where

$$
\begin{equation*}
H=\sum_{n=1}^{N}\left(\frac{1}{2} x_{n}^{2}+\frac{1}{6} f x_{n}^{3}\right) \tag{2}
\end{equation*}
$$

Since $\vec{\nabla} W=\lambda \vec{\nabla} H$ for some λ, then we have a system of identical equations $\alpha x_{n}=\lambda\left(x_{n}+\frac{1}{2} x_{n}^{2}\right)$ each of them with two roots, $x_{n}=0$ or $x_{n}=\frac{2(\alpha-\lambda)}{f \lambda}$. If there are M nonzero roots, then

$$
\begin{equation*}
W=2 \alpha M\left(\frac{\alpha-\lambda}{f \lambda}\right)^{2} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
H=\frac{2 M}{3 f^{2} \lambda^{3}}(\alpha-\lambda)^{2}(2 \alpha+\lambda) . \tag{4}
\end{equation*}
$$

Using a relation $W=\frac{3 \alpha \lambda}{2 \alpha+\lambda} H$ that follows from (3) and (4) and a condition $H=E$, Eq. (3) is simplified as

$$
\begin{equation*}
W=\frac{3}{2 \lambda^{-1}+\alpha^{-1}} E . \tag{5}
\end{equation*}
$$

From (5), it follows that minimum of W is reached for minimum of possible λ. The parameter λ implicitly depends on M according to the formula

$$
\begin{equation*}
\frac{2 M}{3 f^{2} \lambda^{3}}(\alpha-\lambda)^{2}(2 \alpha+\lambda)=E \tag{6}
\end{equation*}
$$

that follows from (4) and the restriction $H=E$. So, the problem reduces to finding of minimum root λ of Eq. (6) for all possible $M=0,1, \ldots, N$, the number of nonzero x_{n}.

Eq. (6) is simplified as

$$
\begin{equation*}
(\mu-1)^{2}(2 \mu+1)=g \tag{7}
\end{equation*}
$$

where $\mu=\alpha / \lambda$ and $g=\frac{3 E f^{2}}{2 M}$. Eq. (7) has only one parameter, g, and it is quite elementary to prove that its maximal root increases when g increases (for positive g), see the following figure.

So, λ is minimal when the root μ is maximal, or for a maximal possible g that is for $M=1$.
Finally, we found that the minimum of W is attained at one of N equivalent points $\left(0, \ldots, x_{n}, 0, \ldots, 0\right)$ where $x_{n}=\frac{2(\alpha-\lambda)}{f \lambda}, \lambda=\alpha / \mu$ and μ is the maximal root of Eq. (6) with $M=1$. There is an explicit formula for this root of the cubic equation:

$$
\begin{equation*}
\mu=\frac{1}{2}\left(1+D+D^{-1}\right) \tag{8}
\end{equation*}
$$

where $D=\left[2 g-1+2\left(g^{2}-g\right)^{1 / 2}\right]^{1 / 3}, g=\frac{3}{2} E f^{2}$.

