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Finding constraint minima for separable anharmonic potential with 

cubic anharmonicity 

Let us find minimum of the function 
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Using a relation HW
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 that follows from (3) and (4) and a condition EH = , Eq. (3) is 

simplified as 
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From (5), it follows that minimum of W  is reached for minimum of possible λ . The parameter 

λ  implicitly depends on M  according to the formula 
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that follows from (4) and the restriction EH = . So, the problem reduces to finding of minimum 

root λ  of Eq. (6) for all possible NM ,...,1,0= , the number of nonzero nx . 

Eq. (6) is simplified as 
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where λαµ /=  and 
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= . Eq. (7) has only one parameter, g , and it is quite elementary to 

prove that its maximal root increases when g  increases (for positive g ), see the following figure. 
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 So, λ  is minimal when the root µ  is maximal, or for a maximal possible g  that is for 1=M . 

Finally, we found that the minimum of W  is attained at one of N  equivalent points 
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, µαλ /= and µ  is the maximal root of Eq. (6) with 1=M . 

There is an explicit formula for this root of the cubic equation: 
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