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General aim:

to extend the methods related to perturbation theory (PT) on the
region where the coupling constant (or perturbation parameter) appears
to be strong. I believe that for most problems encountered it may be
achieved in two stages: (1) derivation of recurrence relations between
PT coefficients which makes it possible to calculate large number of
them by computer; (2) selection of suitable generalized summation
procedure such as Borel method or Padé approximants in order to
transform divergent PT series into convergent sequence of
approximants.

In my recent work, the perturbation parameter is 1/N, where N is
the dimensionality of space. My plans for the future are related mainly
to the second stage.

Prehistory of my present research

In my earliest papers [1, 2] the methods of PT were applied for
calculating the energies and widths of bound and exited states in
spherically-symmetric screened Coulomb potentials, especially Yukawa
potential. We used large-order PT in powers of screening parameter.

Summation of PT series for a well-known problem of Stark effect
in a hydrogen atom was considered in [4, 6, 11]. For strong field, the
main problem is how to obtain complex energies by summation of real
terms of PT series. We used special summation procedure, namely
quadratic Padé - Hermite approximants. Convenient recurrence
relations for calculation of such approximants were derived in [3].

In collaboration with V.S.Popov and co-workers from ITEP
(Moscow), I was involved in 1/N-expansion for various quantum-
mechanical problems, such as screened Coulomb potentials, Stark and
Zeeman effects, helium-like ions, and two-center-Coulomb problem [7,
9 - 11, 13]. Somewhere we use the different term "1/n-expansion",
because we expand the energy in powers of 1/n, where n = l + nr + 1, nr
= const, and l→∝ . Our approach is equivalent to 1/N-expansion,



because we arrive to the same radial Schrödinger equation. I have
calculated about 50 expansion coefficients for spherically-symmetric
one-particle problems and about 10 coefficients for the case of axially
symmetric or three-particle problems. Usually, Padé approximants were
used to sum the series. Particularly, we were interested in
quasistationary states, when an effective potential has no real minimum,
so the 1/N-expansion is complex (for example, strong-field Stark
effect).

Recently we examined the asymptotics of large orders of the
coefficients in 1/N-expansion [18 - 21, 25]. Typically, they grow as
factorials, ε(k) ∼  C0 ak kβ k! with k → ∝ . We found the parameters C0, a
and β by means of dispersion relations including an integral from the
imaginary part of the energy. Particularly , a-1 equals to the action
integral standing in the exponent in the quasiclassical formula for decay
rate:

r1

a-1  = ∫ [2(Veff(r)−V0 )]1/2 dr

r0

where V0=Veff(r0) is the minimum of the effective potential, and r1 is a
turning point, Veff(r1)=V0 [19]. For bound states, there is a pair of
complex-conjugate turning points, so the large-order asymptotics
contains two terms: ε(k) ∼  (C0 ak  + C0* a*k kβ) k! where C0 and a are
complex constants.

Details of my present and future work

In my recent research, I extend the earlier results on asymptotics of
large orders of 1/N-expansion [18 - 20] to multidimensional effective
potentials for treating nonspherically-symmetric and three-particle
systems. My approach to the 1/N-expansion in large order for such
systems is guided by recent studies of 1/N-expansion for helium
isoelectronic sequence, see:

Googson D.Z., López-Cabrera M. et al, J.Chem.Phys. 1992,
v.97, no.11, p.8481.



 This paper is concerned with calculation of the expansion
coefficients to high order (∼ 20 to 30) and with the analysis of the
singularity structure of the energy as a function of 1/N. It was shown
that Padé - Borel summation incorporating results of the singularity
analysis yields highly accurate energies. However, there was accounted
for only the Coulombic pole at δ=1/N=1. An essential singularity at δ=0
responsible for the factorial growth of the expansion coefficients was
found numerically, but its origin remains to be revealed. I guess that it
would be very useful to know exactly the singularity of the Borel
function δ0=1/a, where a is the parameter of large-order asymptotics.
My object is the calculation of the parameter a for various
multidimensional systems.

   I convert the calculation of PT in large order into barrier-
penetration problem by means of well-known dispersion techniques, see
for example:

Banks T., Bender C.M., Wu T.T., Phys.Rev.D 1973, v.8,
no.10, p.3346.

I deal with a multidimensional quantum decay problem (two-
dimensional for axially symmetric system and three-dimensional for
three-particle system).

   The central problem is the solution of the eikonal equation and
minimization of the classical action in order to determine the parameter
a. Two different approaches are used. The first one is based on the
method of characteristics. The classical trajectories in an inverted
effective potential are calculated, a trajectory is chosen which
terminates at a stopping point and which represents the most probable
escape path, see:

A.Schmid, Ann.Phys.(N.Y.), 1986, v.170, p.333.

The parameter a equals to the reciprocal of the action along this
trajectory. In the second (quite novel) approach, the action is expanded
as a perturbation series around the minimum of the effective potential.

As an example that has all essential features of the general problem,
I was investigating a hydrogen atom in parallel electric and magnetic
fields. Just recently, two papers on this topic were prepared in
collaboration with V.S.Popov [21, 25].



   As a simple model, I am going to reexamine the coupled
anharmonic oscillators, see:

Banks T., Bender C.M., Phys.Rev.D 1973, v.8, no.10, p.3366.

My preliminary calculations reveal some inaccuracies in Table 1
from this paper.

   Also, I am going to examine a more difficult problem for helium
isoelectronic sequence. Note, that there is no decay, so only complex
stationary points of the classical action exist which determine the
parameter δ0=a-1. I would be able to check approximate results for
singularities δs≡δ0 obtained by López-Cabrera et al in 1992. Finally, I
hope to improve the convergence of Borel sums by taking into account
the singularity of the Borel function δ0=1/a (namely, by using Darboux
approximants, accounting for square-root singularities).

At the moment, I am investigating 1/N-expansion for near-
degenerate excited states, such as |010> and |200> states of helium. For
details, see enclosed abstracts, especially the second one. Here, I only
notice that such degeneracy is very typical for higher excited states in
multidimensional problems.


