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We generalize the concept of Tully-Preston surface
hopping to include larger jumps in the case that the
surfaces do not cross. Instead of identifying a com-
plex hopping point, we specify a jump between two lo-
cales in phase space. This concept is used here to find
propensity rules for the accepting vibrational mode(s)
in a radiationless vibronic relaxation transition. As
an application, we consider the classic problem of
S2 → S0 vibronic relaxation transition of the benzene
molecule where 30 modes of vibration compete for the
electronic energy. Given the energy gap, reasonable
displacements and recently calculated force fields we
show that the surface jumping involves the jump in
coordinate space of a single C − H local stretching
mode of the hydrogen atom toward the ring.

I. INTRODUCTION

Molecular electronic transitions may be radia-
tive or non-radiative. In either case, the pro-
cess may be Franck-Condon allowed or supressed.
The allowed processes correspond to a crossing
of Born-Oppenheimer potential energy surfaces in
the classically accesible region, whereas Franck-
Condon supressed events have no such crossing.
Examples include radiative processes in the wings
of absorption or emission band envelopes, and ra-
diationless events for nested potential energy sur-
faces.

We focus here on intuition and procedures for
realistic polyatomic processes. For the case of sur-
face crossing, the Tully-Preston surface hopping
[1] picture has been of considerable value, permit-
ting both intuition and simple procedures for cal-
culating rates of electronic conversion. When the
surfaces cross, trajectories can hop smoothly with
little or no change in position or momentum at the
time of the hop. But often surfaces do not cross.
What then? Of course, the rate for such cases
is generally lower because of the implied supres-
sion of Franck-Condon factors. However, these su-
pressed events may be “the only game in town” or
may be significant channels competing with oth-
ers. Analytical continuation is sometimes used in
these cases to recognize a complex jumping point
in coordinate space [2–4], but we want a more di-
rect procedure which is applicable to many de-
grees of freedom. The aproach we use is surface

jumping [5].
Our paradigm in this paper is a radiationless

transition between nested surface potentials as
shown in figure 1(b). This situation can also arise
radiatively, if we consider say the upper surface
to be raised past the absorption maximum by the
photon energy hν as in figure 1(d). We have in
mind a many coordinate example.

Perhaps it is not obvious that any useful classi-
cal picture can emerge for this noncrossing situa-
tion, since the situation we describe is classically
forbidden. However, other classically forbidden
processes have very useful classical descriptions,
such as barrier tunneling, which involves trajec-
tories in imaginary time or on the inverted po-
tential energy surface. Recently, some of us have
outlined a procedure to recognize the jumping
points in phase space in the noncrossing regime
[5,6]. We have shown, and demonstrated for a
harmonic model, that identification of the jump-
ing points enables easy derivation of propensity
rules for the distribution of the electronic energy
between competing vibrational modes [5]. Here
we present the first application of this phase-space
method to a realistic complex physical system,
the 30 modes problem of the S2 → S0 transition
of the benzene molecule [7–11]. The transition
takes place through non-radiative internal conver-
sion and a large energy of 0.228 eV is released to
the vibrational degrees of freedom of the ground
S0 state. The two surfaces do not cross in a clas-
sically allowed region and a quantum jump must
take place. For the example of the S2 → S0 tran-
sition in the benzene molecule it is certainly not
trivial to determine which modes or combination
of the 30 vibrational modes would be first excited
during the quantum jump.

Questions that we address in this paper are:

• Where will the jump between the two sur-
faces take place?

• What is the best system of coordinates to
describe the process?

• What is the sensitivity of these predictions
to the value of various parameters?

The outline of the paper is as follows: Surface
jumping is defined and analyzed in section II. In
section III we review the known and unknown
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experimental and theoretical data regarding the
S2 → S0 transition of the benzene molecule. In
section IV we apply the method of section II to the
process described in section III using only known
parameters and making the simplest conjectures
for the unknown parameters. Section V discusses
the sensitivity of the results to the unknown data
regarding the S2 surface potential. Section VI
concludes and summarizes.

II. THE PHASE SPACE APPROACH FOR
ANALYZING FRANK-CONDON FACTORS

A. Quantum-mechanical treatment in
coordinate space

The probability for an allowed transition from
the vibronic state i to a vibronic manifold j, where
i, j refer to electronic states is given by:

P i→j = |µelec|2
∑
{n′k}

∏
k

∣∣∣〈χjn′
k
|χink

〉∣∣∣2 , (1)

Here µelec =
∫
ψ∗j µ̂elecψid ~r, is the dipole transi-

tion moment between the electronic states ψi and
ψj and µ̂elec is the dipole moment operator. The
integration d~r is over all the electronic coordinates
~r. The nuclear wave function for the mode qk in
the electronic state i for vibrationally excited state
nk is χink , and separability is assumed. Separabil-
ity is not necessary for our approach, and we do
not use it below for the final state, but here we use

it for simplicity. The term
∏
k

∣∣∣〈χjn′
k
|χink

〉∣∣∣2 in this

expression is the FC factor squared between two
vibronic states. The summation,

∑
{n′k}

, is over a

manifold of vibronic states, whose energy is equal
to the energy of the initial state i. Note that an
excited initial state, as considered here, has a fi-
nite energy width allowing for many final states
with slightly different energies. For electronically
forbidden transition µelec = 0 at the equilibrium
position. Nevertheless, the transition can occur by
nonadiabatic coupling via the kinetic energy oper-
ator. The probability for an electronically forbid-
den transition from the vibronic state i to another
vibronic manifold j is:

P i→j =
∑

p

|Mp
elec|

2
∑
n′p

∣∣∣∣〈χjn′p | ∂∂qp
|χinp

〉∣∣∣∣2 ∑
{n′k 6=n′p}

∏
k 6=p

∣∣∣〈χjn′
k
|χin′

k

〉∣∣∣2 .
(2)

Here, Melec =
〈
ψj | ∂∂qp

|ψi
〉

is the non-adiabatic
interaction matrix element while p serves as the
promoting vibration of the normal mode qp. The
promoting mode is the mode which couples be-
tween the electronic surfaces via its kinetic en-
ergy operator and therefore should have the cor-
rect symmetry to prevent the electronic matrix el-
ement Me from vanishing. The sum over p takes
into account all possible promoting modes. The
last term in Eq. (2) is the FC factor squared for
the nuclei subspace which includes all the nuclei
coordinates except for the one which serves as the
promoting mode with a summation over all the
possible divisions of the vibrational energy be-
tween the modes. In both these cases, the FC
factors strongly influence the transition probabil-
ity and practically control the distribution of the
electronic energy that is released in the relaxation
process between the competing vibrational modes.
It is useful to define the total FC factor squared
as:

ΣI→F =
∑
{n′k}

∏
k

∣∣∣〈χjn′
k
|χink

〉∣∣∣2 (3)

for allowed transitions and:

ΣI→F =
∑
n′p

∣∣∣∣〈χjn′p | ∂∂qp
|χinp

〉∣∣∣∣2 ∑
{n′k 6=n′p}

∏
k 6=p

∣∣∣〈χjn′
k
|χink

〉∣∣∣2
(4)

for forbidden transitions. Eqs. (3) and (4) were
explicitly written for separable states. General-
ization to non-separable states is straightforward
as applied below.

The rate of the transition is given by Fermi
golden rule:

Γ =
2πλ2

h̄
ρfinalΣI→F (5)

where ρfinal is the density of states on the ground
electronic state (accepting surface) and λ2 is the
electronic part of either Eq. (1) or (2) for allowed
or forbidden transitions, respectively. This rate
can be written as the trace over two density ma-
trixes: Γ = Tr [ρ̂f ρ̂i] 2πλ2/h̄ for allowed tran-
sitions and Γ = Tr [ρ̂f ρ̂′i] 2πλ2/h̄ for forbidden
transitions, where

ρ̂i =
∏
k

|χink〉〈χ
i
nk
|, (6)

ρ′i is defined below, and
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ρ̂F =
∑
{n′k}

∏
k

|χjn′
k
〉〈χjn′

k
| ρfinal = δ

(
ĤF − E

)
,

(7)

where ĤF is the Hamiltonian operator of the final
electronic surface.

One way to determine which are the vibrations
that are most likely to be excited is to calculate
the different FC factors for all possible combina-
tions of different divisions of the energy quanta
between the modes. This, however, would de-
mand an enormous computational effort and can
be regarded as impossible for large molecules espe-
cially when the energy that is transferred between
the degrees of freedom is large. Moreover, when
the potential energy surface cannot be treated as
separable, the eigenstates themselves are of mixed
character and many will share roughly the same
FC intensity, without revealing the mechanism or
geometry of the jump between surfaces. Indeed,
this can happen even for separable surfaces, in
that many different final state FC factors could
be comparable in size, reflecting the fact that the
“jump” was not along any one of the separable
coordinates.

B. Quantum-mechanical treatment in phase
space

In the Wigner representation the total FC fac-
tors squared, multiplied by the final density of
states, are expressed as an overlap integral in
phase space. Our method for the derivation of
propensity rules is based on recognizing the points
in phase-space in which the FC integrand peaks.
For convenience, we use an abridged form (q, p) for
the nuclear positions and momenta for the set of
normal modes ({qk} , {pk}). In the Wigner phase
space representation Γ takes the form:

Γ =
2πλ2

h̄

∫ ∞
−∞

dq

∫ ∞
−∞

dp ρF (q, p) ρI(q, p), (8)

for allowed transition. Here ρI(q, p) and ρF (q, p)
are the Wigner functions of the initial and final
states density matrices ρ̂I and ρ̂F , respectively,
defined in the usual way:

ρ(q, p) ≡ 1
2πh̄

∫ ∞
−∞

dη
〈
q +

η

2
|ρ̂|q − η

2

〉
e−ipη/h̄.

(9)

Practically, we start with the description where
each of the initial vibrational wave functions for

each of the vibrational modes is characterizes by
its quasi-distribution, i.e. we assume a separable
system, for the excited electronic state. Conse-
quently, the Wigner function ρI(q, p) is a sim-
ple product of these well defined one dimensional
quasi-distributions:

ρI(q, p) =
∏
k

ρkI (qk, pk) . (10)

For a forbidden transition:

Γ =
∑

p

Γp , (11)

Γp =
2πλ2

h̄

∫ ∞
∞

dq

∫ ∞
∞

dp ρF (q, p) ρ(p)′
I (q, p), (12)

where the sum is over the promoting modes,

ρ
(p)′
I (q, p) ≡ ρ′pI (qp, pp)

∏
k 6=p

ρkI (qk, pk) , (13)

ρ′pI (qp, pp) ≡
[
ρ̂′pI
]
W

=

[∣∣∣∣∣∂χinp

∂qp

〉〈
∂χinp

∂qp

∣∣∣∣∣
]
W

, (14)

and [A]W stands for the Wigner transform of A.
For the final state Wigner function, ρF (q, p), a

formal expression is obtained which substantially
simplifies the calculation. For relaxation processes
the final state (usually a quasi-continuum mani-
fold of states) is defined by energy conservation
to be given by the density matrix δ

(
ĤF − E

)
.

We define ∆(q, p) to be the Wigner transform of
this Delta-function density and get

Γ =
2πλ2

h̄

∫
dq dp ∆(q, p)ρI(q, p), (15)

for an allowed transition and

Γp =
2πλ2

h̄

∑
p

∫
dq dp ∆(q, p)ρ(p)′

I (q, p), (16)

for a forbidden transition.
In our search for the direction of the sur-

face jump we look for the point(s) or re-
gion(s) in phase-space (q∗, p∗) where the inte-
grand, ∆(q, p)ρI(q, p), or ∆(q, p)ρ(p)′

I (q, p), peaks.

C. Surface jumping

The Wigner function of the quasi-continuum fi-
nal state ∆(q, p) can be expanded as an asymp-
totic power series in h̄ [12–15]. A criterion for the
validity of the asymptotic series expansion is given
by:
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(
h̄2

2m |∇V |

)1/3

< σ (17)

where σ is the width of the initial wave function
on the excited electronic surface, m is the reduced
mass of the oscillator and |∇V | is the magnitude
of the gradient of the surface potential at the point
of the transition. The zero order of this expansion
which is in some sense a semiclassical approxima-
tion gives:

∆(q, p)→ δ[E −HF (q, p)] (18)

where HF is the classical Hamiltonian for the final
(accepting) electronic state. Expansion to order
h̄2 gives an Airy function instead of the delta func-
tion. An exact calculation of transition probabili-
ties and rates may require more care, but the rela-
tive order of magnitudes of competing transitions
as well as the partition of energy between compet-
ing accepting modes can be determined already at
this semiclassical approximation level [16].

We are looking for the phase-space point(s)
(q∗, p∗) where the integrand:

δ[E −HF (q, p)]ρI(q, p) (19)

is maximal i.e. we maximize the initial Wigner
function ρI(q, p) under the constraint E =
HF (q, p). (For forbidden transition ρI(q, p) is
replaced by ρ

(p)′
I (q, p) throughout this analysis).

The location of these points in phase-space gives
us the phase-space jumping point(s) and from it
we deduce an estimation for the energy distri-
bution between competing modes. The value of
ρI(q, p) at these points indicates to the expected
strength of the transition, although we emphasize
again that predictions for absolute transition rates
must be based on calculation of the integral and
the electronic prefactors; here, we are finding the
dominant pathway for radiationless transition.

The geometric interpretation of the problem is
demonstrated in figure 2. The solid inner ellipses
represent the contours of the Wigner function,
here a gaussian, in some two dimensional space.
The outer dashed curve is the energy surface con-
straint HF = E. The geometric assignment is to
find the points where the highest contour of the
surface ρI(q, p) meets the constraint hypersurface
E = HF (q, p). As demonstrated in figure 2 the
strength of the extremal points can vary. Panel
(a) shows the case where the point of maximum of
the Wigner function under the energy constraint
is a strong maximum. In this case, there is a
very rapid decrease of the Wigner function as one
moves away from the extremum point on the en-
ergy constraint hypersurface. We can refer to the

point as a true jumping point and use it to calcu-
late expectation values like the relative amount of
energy that goes into each of the modes [17]. Panel
(b) stands as an example for a weak extremum. In
this diagram the Wigner function contour and the
energy constraint hypersurface have a very simi-
lar curvature. A decisive jumping point is not well
defined.

D. Numerical considerations

The identification of the jumping point reduces
in this formalism to the mathematical problem of
finding the maximum of a multidimensional non-
linear objective function under a nonlinear con-
straint. Simple geometric considerations show
that at all the extremum points:

∇HF = λ∇ρI . (20)

This condition gives a simple set of coupled al-
gebraic equations whose roots define the local
extrema. Note that direct multidimensional lo-
cal minimum finding can be converted by various
computational methods (like steepest decent) to a
one-dimensional search. It is considered therefore
to be a much easier computational problem than
a multidimensional root search of a system of non-
linear equations [18]. However, numerical meth-
ods for local minima finding under a constraint
appear to have difficulties in distinguishing be-
tween local minima, maxima, and saddle points.
We therefore analyze the transition in two steps.
We first use a code that takes the Wigner function
and the ground electronic surface potential and
uses a standard routine to find extremum points
(q∗, p∗) of the Wigner function under the energy
constraint, and the value of the Wigner function,
ρI (q∗, p∗) , at these points. We then study the
Wigner function on the constrained hypersurface
at the vicinity of these points using algebraic con-
siderations. The eigenvalues of a tensor of sec-
ond derivatives in the subspace of the constrained
phase space are calculated and the nature of each
extremal point, be it a minimum, maximum, or
saddle point is determined (see [17] for more de-
tails). For some cases, especially in the harmonic
approximation, the problem is also solvable ana-
lytically. A detailed analytic analysis of the prob-
lem can be found in [5,17].
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III. THE S2 → S0 TRANSITION IN THE
BENZENE MOLECULE

Transitions in the benzene molecule are one of
the most investigated examples in molecular spec-
troscopy [7]. The transition from the ground state
to the first two electronic states B2u and B1u is
forbidden by symmetry. The vertical energy gap
between the S0 and S2 state is 0.228 e.V. [7]. The
S0 → S2 absorption spectrum is very diffuse due
to the non-adiabatic interactions and the quantum
yield for the radiative transition is less then 1%
in both the fluorescence (singlet to singlet) and
phosphorescence (singlet to triplet) paths. Yet,
the S2 decay rate for the process is extremely fast
(50 fs) [10]. These phenomena led to the conclu-
sion that the relaxation takes place through inter-
nal conversion (IC). Ref. [11] measured the spec-
trum for the internal vibrational relaxation which
takes place immediately after the IC process and
found bands which belong to the C−H stretching
bonds, i.e. around 3000cm−1. While other accept-
ing modes are not excluded, (for example, no data
was given as to the region around 1600cm−1), this
gives a clear indication that a significant amount
of the electronic energy is transferred in the relax-
ation process to the C −H modes.

In benzene the electronic state change between
the ground state and the first excited states is
concentrated on the C −C aromatic ring system.
Therefore, the C−C modes are the most displaced
relative to the ground electronic state. From a
classical point of view, it is easy to show that in
the general case, the mode that is the most dis-
placed is the mode that receives the energy. The
experimental results mentioned above stands as
one of the counter examples for this classical be-
havior. We use here the phase-space analysis to
show that this result can be easily explained.

To set the groundwork for the analysis in the
next sections, we first review what is known (and
unknown) about the modes of vibration and the
electronic surfaces involved in the process.

A. The S0 surface potential

The configuration of the ground S0 electronic
state of the benzene is hexagonal and belongs to
the D6h symmetry group. The benzene molecule
has 3N − 6 = 30 modes of vibrations. In the nor-
mal mode coordinates 20 of these modes belong to
10 degenerate pairs. A displacement of a normal
mode in an equilibrium configuration cannot take
place unless the mode is totally symmetric. For
the benzene molecule in the D6h symmetry only

two normal modes of vibration belong to the to-
tally symmetric, a1g, representation: the totally
symmetric stretching of the C − C bonds (q1 )
and C − H bonds (q2). (The numbering of the
modes in this paper is done according to Wilson
[19]). We mention here the normal modes which
have special importance in the rest of the paper.
The six in plane C −H stretching normal modes
are six orthogonal linear combinations of the six
local C −H in-plane stretching modes si and can
be displayed by the 6× 6 unitary matrix transfor-
mation:
q2 (a1g)
q7 (e2g)
q13 (b1u)
q20 (e1u)
q7a (e2g)
q20a (e1u)

 =
1√
6



1 1 1 1 1 1√
2 − 1√

2
− 1√

2

√
2 − 1√

2
− 1√

2
1 −1 1 −1 1 −1√

2 1√
2
− 1√

2
−
√

2 − 1√
2

+ 1√
2

0
√

6
2 −

√
6

2 0
√

6
2 −

√
6

2
0

√
6

2

√
6

2 0 −
√

6
2 −

√
6

2




s1
s2
s3
s4
s5
s6


(21)

Figure 3 displays a physical picture of the C −H
stretching modes.

An enormous amount of work was done by
quantum chemists to find the electronic S0 surface
potential of the benzene. The most recent paper
that gives ab-initio results for S0 is by Miani et
al. [20] . We take the form of the ground-state
potential energy surface from [21] to be:

V (~q) =
1
2

∑
k=1,2

mk (ωgk)2 (qk − qgk)2 +
1
6

∑
ijk=1,2

φijkrirjrk +O(q4) ,

(22)

where:

ri =
√
ωgimi(qi − qgi ) (23)

Here ωgk = ω̃gk[cm−1] / 2R∞, qgk = q̃gk[cm] / a0, and
mk = m̃k /me, are the frequencies, displacements,
and reduced mass of the modes in a.u., where R∞,
a0, and me are Rydberg constant, the Bohr ra-
dius, and the electron mass of the ground elec-
tronic state respectively. From here on we use the
parameters in the a.u. scale. The anharmonic
force field constants φijk = φ̃ijk[cm−1] / 2R∞ are
taken from [20]. As mentioned above the only
modes with non-zero equilibrium position at the
S0 hexagonal conformation are qg1 = 6.47 Bohrs
and qg2 = 5.02 Bohrs.

B. The S2 surface potential

Much less is known about the S2 surface po-
tential. The known values used in this paper are
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the harmonic frequencies calculated by [22]. The
anharmonicities and the displacements of the S2
potential surface are not known. The symmetry
group of S2 can be D6h, as in S0, or D2h due
to a pseudo-Jahn-Teller effect [7]. The normal
modes of vibration may be the same as in S0 or
different, due to a possible Duschinsky mode ro-
tation, i.e. coupling of non-degenerate modes that
belong to the same symmetry representation. In
section IV we use the simplest ansatz for these
unknown properties. We neglect the anharmonic-
ity of S2 , assume a D6h symmetry, no Duschin-
sky effects, and displacements as in the S1 state,
qg1 = 6.63 Bohrs and qg2 = 5.01 Bohrs [7]. This
over-simplified model is needed in order to un-
derstand the mechanism of the transition, and it
forms the reference frame for more realistic mod-
els considered in section 5. In section 5.1 we treat
the displacements as free parameters. In section
5.2 we consider anharmonic effects on the S2 state.
In section 5.3 we assume a D2h symmetry and in
section 5.4 we consider one possible Doschinsky
mode rotation which mixes between q14 and q15.

IV. SURFACE JUMPING IN BENZENE

In this section we use only known parameters
and the simplest possible conjectures for the un-
known parameters. In the next section we con-
sider the possible impact of the different unknown
parameters.

A. The initial Wigner function

For the sake of simplicity, we consider the non
radiative transition from the vibrationless state of
the S2 to the manifold quasi-continuum states of
the S0(A1g) ground electronic state. Relaxation
from higher vibrational states can be considered
in a similar way.

Taking the initial state of S2 to be the ground
state wave function for the normal mode k of a
harmonic oscillator we have:

φkI (qk) =
(
mkω

e
k

πh̄

)1/4

exp
[
−1

2
mkω

e
k

h̄
(qk − qek)2

]
,

(24)

where ωek and qek are the frequency and the equilib-
rium configuration of the k normal mode of the
e excited electronic state, respectively. For S2,
e = 2. The total wave function is a product of the
wave functions of each of the modes. The Wigner

transform of a gaussian wave function is another
gaussian, for mode k :

ρkI (qk, pk) =
1
πh̄

exp
[
−mkω

e
k

h̄
(qk − qek)2 − p2

k

mkωekh̄

]
.

(25)

The initial total Wigner function is:

ρI(q, p) =
30∏
k=1

ρkI (qk, pk) ≡
(

1
πh̄

)30

e−W . (26)

The S2 → S0 IC is a forbidden transition. There-
fore, when calculating the transition rates or the
jumping point, the initial Wigner function ρI(q, p)
should be replaced by ρ

(p)′
I (q, p) as defined and

explained in section 2.2. Taking φp
I to be as in

Eq. (24) we get:

ρ
(p)′
I (q, p) =

mpω
e
p

h̄

(
mpω

e
p

h̄
(qp − qep)2 +

p2
p

mpωeph̄

)
ρI(q, p).

(27)

The integral over the nuclear degrees of freedom
giving the transition strength for a forbidden tran-
sition differs from the FC factor squared for an
allowed transition by an additional polynomial
in the integrand multiplying the Gaussian initial
Wigner function. With this additional factor, the
transition probability would vanish for a zero ex-
citation of the promoting mode and therefore the
promoting mode must have, at least, some mini-
mal excitation.

The jumping point for an allowed transition is
found by maximizing ρI(q, p) while the jumping
point for a forbidden transition is found by maxi-
mizing ρ′(p)

I (q, p), both under the same constraint:
HF (q, p) = E. It can be shown that when sur-
face jumping occurs these two procedures give the
same quantum jump. For large excitations of the
promoting mode, the behavior of the Wigner func-
tion is dominated by the exponent and the influ-
ence of the polynomial is negligible. For small ex-
citations of the promoting mode there is, as men-
tioned above, a minimal amount of energy that
must be transferred to the promoting mode of vi-
bration yet this hardly affects the quantum jump.
Thus, we maximize ρI(q, p) and not ρ(p)′

I (q, p).
Within the harmonic approximation ρI is a

gaussian and minimization of the argument in the
exponent W is equivalent to the maximization of
ρI . Therefore, we look for minima of W defined in
Eq. (26) under the constraint HF (q, p) = E. We
analyze the system in two steps: first by using
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a harmonic approximation for HF and second by
including the anharmonic force field of Ref. [20].
For convenience we use, at first, normal modes
coordinates.

B. Harmonic ground electronic potential

Consider a harmonic approximation for the
Hamiltonian of the lower electronic surface:

Hh
F =

1
2

30∑
k=1

[
p2
k

mk
+mk (ωgk)2 (qk − qgk)2

]
. (28)

Results of our calculations show that the ex-
tremum points (q∗, p∗) of W under the constraint
Hh
F = E form an 11 dimensional subspace within

the 60-dimensional phase space of the problem.
All of the points in this subspace include a small
position excitation of the C − C totally symmet-
ric mode (around 2% of the total energy) and an
arbitrary position or momentum excitation of the
six C−H in plane stretching modes. The Wigner
function ρI(q, p) is highly peaked on this subspace
with all the points having the same value of the
(argument of the) Wigner function, which is our
measure of the level of propensity for a transition
at these points, W ∼= 32. A closed-form solution
for the harmonic approximation can be found in
Ref. [5] for the case of displacement in only one di-
rection and in Ref. [17] for a general displacement.
For our system the analytic solution confirms the
numerical results. Second inspection of the C−H
normal modes with the same high propensity show
that they have almost the same value of miω

2
i and

could be considered as degenerate oscillators. We
conclude that:

• Within a harmonic approximation the
surface jumping is restricted to an 11-
dimensional hypersurface within the 60-
dimensional phase-space of the problem.
The surface, with W ∼= 32, represents all
the combinations of in-plane C−H stretch-
ing modes subject to the demand of energy
conservation.

C. Anharmonic ground electronic potential

In this subsection we repeat the analysis of
the previous subsection with the same initial har-
monic state on the excited electronic surface but
this time with the most recent anharmonic force
field for the ground state potential surface:

HF =
1
2

30∑
k=1

[
p2
k

mk
+mk (ωgk)2 (qk − qgk)2

]
+

1
6

∑
ijk

φijkrirjrk .

(29)

Although adding the anharmonic force field in this
asymmetric fashion does not seem self consistent,
we do so first, and then, in the next section, we
check the possible effects of anharmonicities of the
excited surface. Accurate anharmonic force field
for the (second) excited state is not available to
our knowledge and the enormous number of an-
harmonicity constants can not be simply treated
as free parameters.

In table 1 we show the points found by the nu-
merical minimization of W under the constraint
HF = E. The points which have the lowest value
of W , highest propensity, have an almost sixfold
degeneracy with W ∼= 17. These points corre-
spond to the same small position excitation of
the totally symmetric C −C stretching mode and
different specific combinations of the six C − H
stretching modes position excitations.

The data in the literature led us to perform the
analysis in the normal modes of vibrations frame-
work, yet, in order to decode the meaning of the
points we have transformed the coordinates from
normal modes to local modes using the inverse
matrix of the transformation (21). In table 2 we
present the same points as in table 1 in local mode
coordinates. The physical meaning of the points
is now obvious. The six points with the highest
propensity refer to six equal points of local mode
excitation of C − H stretching with an addition
of a very small excitation of the totally symmetric
C − C stretching mode which is the only signifi-
cantly displaced mode within the 30 modes of the
benzene.

D. Local vs. normal coordinates

The best choice of coordinates for the descrip-
tion of molecular spectroscopy depends on the ex-
act process that has to be described. Low energy
vibrational excitations like IR absorption spec-
troscopy are usually described in terms of nor-
mal modes oscillators while high energy processes
like dissociation are best described within a local
mode framework. It is clear that dissociation of
a molecule occurs by breaking one local mode be-
tween two atoms; this is inconveniently described
by high excitation of several bonds between atoms
in the normal mode description.

In our analysis the excitation of a local C −H
mode seems to have its origin in the structure of
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the surface potential. Using the local coordinates,
the surface potential for the six in plane C − H
stretching modes has the form:

V =
∑
i,j

Vijsisj +
∑
i,j,k

Vijksisjsk . (30)

Because of the symmetry of the problem V11 =
V22 = Vii, V12 = V23 = V34 = Vi,i+1 etc.. The
use of this form reduces the number of parameters
that determine the third order anharmonic surface
potential to only twelve parameters (instead of 56
in the general normal description). This fact may
encourage the attempt to represent the surface po-
tential we took from [20] in local modes. After this
transformation of the coordinates we have found
that all the cross coefficients in the local modes
formulation are very close to zero. We thus find
that the potential represents six separable anhar-
monic oscillators. This reduces the number of pa-
rameters that describe the anharmonic potential
to only two. The separability of the potential leads
to a straightforward understanding of the reason
for a local excitation found in our calculations. It
can be proven that in this case of separate po-
tentials with cubic anharmonicity the point with
highest propensity corresponds to a single local
excitation [6,17]. We must note here also that the
possibility of diagonalizing the potential in local
modes was suggested already 30 years ago in or-
der to understand the overtones of the C −H in
plane stretching in the IR spectrum of the ben-
zene [23,24]. Here we started with normal modes
but are forced by the results of our calculation to
change to local modes.

We summarize our conclusions so far:

• Inclusion of anharmonic effects for the
ground electronic state reduces the dimen-
sionality of the transition from an 11 dimen-
sional hyperspace to small regions surround-
ing six degenerate points.

• The points with the highest propensity de-
scribe a single excitation of a local mode
of C − H stretching and another consider-
ably smaller simultaneous excitation of the
totally symmetric C − C stretching mode.

V. SENSITIVITY TO DIFFERENT
CONJECTURES REGARDING THE S2

SURFACE POTENTIAL

As mentioned in section III, a lot of information
regarding the S2 surface potential is unknown.
In this section we (separately) treat many of the

missing parameters as free parameters and check
the sensitivity of the results obtained in the pre-
vious section to these changes.

The following subsections consider:

1. Different displacements of the S2 surface
(with no change of the symmetry of the
molecule).

2. Anharmonicity of the upper surface (within
the assumption of seperability).

3. Different symmetry of the S2 surface (D2h
instead of D6h) due to a possible pseudo-
Jahn-Teller effect.

4. A possible Duschinsky mode rotation.

A. Displacements of the S2 surface potential

The actual C − H and C − C bond lengths of
the S2 state are, to our knowledge, unknowns.
Moreover, the actual conformation of the molecule
in the S2 state is in doubt. In this subsection
we assume that the symmetry of the benzene is
conserved in the S2, i.e. the molecule is hexago-
nal and belongs to the D6h point group of sym-
metry. Therefore, the only modes that can have
non-zero displacements are the totally symmetric
C − H and C − C breathing modes. We take
the potentials from section 4.2, implement our
maximization procedure and search for jumping
points for different displacements of q1(C−C) and
q2(C −H).

Figure 4 displays the non-zero coordinates of
the jumping point with the highest propensity and
the value of the Wigner function at this point, ver-
sus the displacement of the C − C bond length.
From the graph it is easy to see that the main
change of the excitation is in the C − C totally
symmetric direction. The dependence is linear
with a slope of almost 1.1, (see Ref. [17] for an
analytic derivation of a similar result in the har-
monic case). Changes of the C −H local excita-
tion and of the value of the Wigner function at
the jumping point, are small and nonlinear.

In figure 5 we display the coordinate of the
jumping point with the highest propensity and the
value of the Wigner function at this point, ver-
sus the displacement of the C − H bond length.
Again, the excitation of the displaced mode, here
the totally symmetric C − H stretching normal
mode, is linearly proportional to the displacement
(as in a vertical transition). The totally symmet-
ric C − C is not affected at all, while the local
C − H stretching mode which is the mode that
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undergoes the jump is again slightly, nonlinearly,
affected. Note that in this framework the normal
and local C−H stretching act like almost different
directions in space.

The picture is of one mode undergoing a jump
while an almost vertical transition takes place for
the other modes. This is demonstrated in figure
7 which plots the excitations in the different di-
rections and the value of the Wigner function at
the jumping point for different energy gaps be-
tween the states with fixed displacements between
the modes. The only mode which changes its ex-
citation due to the change of the energy gap is
the mode which undergoes the jump, here - lo-
cal C − H stretching. The other modes undergo
an almost vertical transition and do not show any
change of the excitation with the change of the
energy that goes into the vibrational degrees of
freedom. The value of ρ (= e−W ) decreases with
the increase of the energy gap between the sur-
faces. This feature is ascribed to the fact the en-
largement of the gap between the surfaces leads
to a larger quantum jump between them, a pro-
cess which is classically forbidden and therefore
less probable.

• When one direction in phase-space dom-
inates the quantum jump, excitations in
other directions are proportional to the dis-
placement, as if in a vertical transition.

B. Anharmonicities for the S2 potential
surface

In the previous section we showed the separa-
bility in the subspace of C −H stretching modes
of the ground surface potential. Full treatment of
the anharmonicities of the high electronic surface
as free parameters without assuming separability
is a formidable task and is not considered here.
Here, we assume separability and study the influ-
ence of the anharmonicity of the upper surface on
the jumping point within the effective one dimen-
sional problem.

Figure 7 displays the one dimensional ground
and excited electronic surface potentials in the lo-
cal mode representation. Relative to the harmonic
potential which is, of course, symmetric, the an-
harmonic potential is softened on its dissociation
part and has a sharper slope on its close approach
part. Applying a harmonic approximation for
both surfaces gives the value of the Wigner func-
tion at the jumping point of W ∼= 32. Taking the
ground surface potential to be anharmonic gives
the value of W ∼= 17. Taking into account the

anharmonicities of the excited state makes both
the wave function and the Wigner function wider
on the dissociation side of the potential and nar-
rower on the close approach side. Consequently,
the value of the Wigner function at the jumping
point W (q∗, p∗) gets a value between the two ex-
tremes of 32 ≤W ≤ 17.

For a quantitative analysis of this property and
in order to make the calculation with an anhar-
monic potential that has a closed form expression
for the initial Wigner function, we use a Morse
approximation for the excited potential surface:

Ve (q) = D
[
1− e−β(q−q0)

]2
(31)

where: β =
√

2mωxe / h̄ and ω, m, xe, and D =
h̄ω / 4xe, are the harmonic oscillator frequency,
the reduced mass of the mode, the anharmonic-
ity, and the dissociation energy of the excited
electronic state. The dissociation energy for the
ground electronic state is Dg = 110.9 kcal/mol=
0.1701 Hartree [25]. Some experimental data, like
the acidity of the benzene molecule on the excited
electronic state [26], indicate to a difference of less
then 10% between the dissociation energy of the
excited and ground states. The dashed line in fig-
ure 7 is the Morse potential for the above values.
From the graph it is obvious that the high order
Taylor series anharmonic force field and the Morse
potential approximations are very distinct approx-
imations. We prefer therefore to use in this sub-
section Morse potential for both the ground and
excited states.

The wave function of the Morse oscillator is a
combination of the associated Laguerre polynomi-
als and the Wigner function is a combination of
the modified spherical Bessel function of the third
kind (MacDonald function) [27,28]. The Wigner
function of the ground vibrational state is:

ρ (q, p) =
2
πh̄

x−2
e

Γ(1/xe − 1)
e−2β(q−q0)K−2ip/βh̄

(
x−1
e e−β(q−q0)

)
,

(32)

where Γ is the Γ function. The order of the Mac-
Donald function that we study is zero because the
momentum at the jumping point is zero, p∗ = 0
, and we study ρ (q, p∗). Figure 8b displays some
examples of Wigner functions, (with p = 0), for
the same frequency ω but different anharmonici-
ties xe. The function is a slightly deformed gaus-
sian where the close approach side of the function
decays more rapidly with the increase of the an-
harmonicity. Figure 8a displays the projection of
the jumping point with the highest propensity on
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the various modes and the value of the Wigner
function at this point, versus the anharmonicity
parameter xe of the upper surface, keeping the an-
harmonicity of the lower surface fixed. The main
feature of the graph is the decrease of the value
of the Wigner function at the jumping point with
the increase of this anharmonicity. The increase
of the anharmonicity makes the closed-approach
side of the Wigner function narrower. This side
is the one on which the jump between the sur-
faces takes place and therefore the sharpening of
the function on this side decreases the value of
the Wigner function at the jumping point. The
values for W are within the qualitative predicted
range discussed above. The only apparent (al-
though small) change of the jumping point with
the change of xe is on the C−H totally symmetric
normal mode axis. The deformation of the Wigner
function due to the anharmonicity xe moves the
center of the initial wave packet to the dissociation
side of the potential. This change of the center
of the wave packet leads to an effective positive
displacement of the wave packet and the center
of the wave packet on the ground electronic sur-
face undergoes an almost vertical transition to a
point in space which is displaced with respect to
the ground configuration, although there is no real
displacement between the two surfaces.

Another interesting feature that arises from
the reduction of the problem to one dimensional
Morse potential regards the direction of the sud-
den change in the local C − H stretch. The dis-
sociation energy of the S0 state is 0.117eV , while
the vertical gap between S2 and S0 is 0.228eV
. Therefore, a jumping point on the dissociation
side has to include a transfer of the energy to
momentum excitation. However, for momentum
excitation, which is always harmonic, we already
made the analysis and found a very low propensity
of W ∼= 32. The jumping point is predominantly
on the close approach side of the potential. One
may conclude that the wave packet lands on the
ground electronic surface at the close approach
side of the potential and that the molecule has
time to decay vibrationally before it can dissoci-
ate.

• An increase of the Wigner function at the
jumping point is obtained with an increase
of the anharmonicity of the lower surface.

• For a fixed anharmonicity of the lower sur-
face, a decrease of the Wigner function at
the jumping point is obtained with an in-
crease of the anharmonicity of the upper sur-
face.

• The anharmonicity on the upper surface
gives correction to the two extreme ap-
proximations of harmonic-harmonic and
anharmonic-harmonic potentials.

• Anharmonicity can induce small excitation
of non displaced modes due to changes in
the center of the initial wavepacket.

C. Pseudo-Jahn-Teller effect

Several papers had claimed that the D6h sym-
metry of the S2 of the benzene molecule is dis-
torted to D2h. Lowering the symmetry of the ex-
cited state can lead to addition of normal modes
which belong to the totally symmetric represen-
tation. Such modes can have non-zero equilib-
rium displacements on the upper deformed sur-
face. Within the 28 non totally symmetric modes
for the hexagonal benzene with a D6h symmetry
group only four modes become totally symmetric
to the lower D2h symmetry. In the D6h symme-
try these modes belong to the degenerate e2g rep-
resentation which splits into two non-degenerate
representations of the D2h symmetry, one of which
is the ag totally symmetric representation. Two
of the four modes relate to changes of C −H con-
formation (q7 and q9) whereas the other two (q6
and q8 ) refer to changes of C − C conformation.
To very good accuracy it can be assumed that the
significant change on the molecule conformation
takes place on the ring and not in the C − H
bonds. Thus, the main changes of the displace-
ments would be for the q6 and q8 normal modes.
Diagrams of these two modes are given in figure
9.

We must note here also that in general, a sig-
nificant change of the force field of the potential
can take place and tremendously change the har-
monic and non-harmonic coefficients. Here we as-
sume, as in Ref. [22], that for the benzene the
main influence of a pJT distortion of the excited
S2 state potential, if exists, is due to a non-zero
displacements of the two modes q6 and q8 of in-
plane vibrations of the ring. This may change the
coordinates of the jumping point but not its zero
momenta. The possibility of an extreme change
also in the frequency of these modes will be stud-
ied elsewhere. Remarkable changes of the frequen-
cies of q6 and q8 (mostly in the triplet state but
maybe also in the singlet) were considered for ex-
ample in Refs. [29,30].

The results of the calculations are given in fig-
ures 10 and 11. In figure 10 we display the nonzero
coordinates of the jumping point with the highest
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propensity and the value of the Wigner function
at this point versus the difference between the an-
gles of the benzene ring. Difference between the
angles gives a nonzero displacement of q6. Again,
we see that the excitation of a displaced mode,
here q6, linearly depends on the displacement. Ex-
citations of the other modes do not significantly
change. Figure 11 plots the coordinates of the
jumping point with the highest propensity and the
value of the Wigner function at this point versus
the difference between the C − C bond lengths.
This change of the bond lengths induces displace-
ments in q8 and q1 and as a result a change in the
coordinates of the jumping point.

Even for a moderate change in the symmetry
a noticeable amount of the energy is transferred
to modes that are displaced due to the pJT ef-
fect. This may be used as an experimental way to
measure, qualitatively at least, the existence of the
pseudo-JT effect in the S2 excited electronic state.
The effect would manifest itself as additional IR
peaks in the vibrational relaxation spectrum of the
S0 electronic state following the S2 → S0 internal
conversion.

• For moderate pJT deformations we can ex-
pect additional features in the IR vibra-
tional relaxation spectrum of the benzene
molecule. This can be ascribed to changes
in the transition point proportional to the
displacement of modes on the excited sur-
face.

D. Duschinsky rotation

Consider the impact of a possible Duschinsky
rotation which couples q14 and q15. Figure 12 dis-
plays diagrams of these two modes as they appear
on the ground electronic state. The new normal
modes on the excited state are mixed according
to: (

q′14
q′15

)
=
(

cosβ sinβ
− sinβ cosβ

)(
q14
q15

)
(33)

where β is the angle of rotation between the axis.
According to Ref. [31], these two modes are cou-
pled in this way on the first excited electronic sur-
face. Here, we consider such a possible coupling
for the second excited surface. Other conjectures
for other mixing can be studied in a similar way.

The rotation in two dimensions and its influence
on the jumping point is demonstrated in figure 13.
The contours of the initial Wigner function on the
excited electronic surface and the constraint on
the lower surface HF = E are plotted by solid and

dashed lines, respectively. The implementation of
the Duschinsky rotation is done by rotating the
inner ellipse by the angle β. A larger difference
between the widths of the Wigner function would
increase the effect of the rotation. The effect has
to be considered in position as well as in momen-
tum space. However, in our calculations no mo-
mentum excitation is found. We first examine the
case β = 900, i.e. q

′

14 = q15 and q
′

15 = −q14 and
find a new couple of points with high propensity
with a large excitation of q14 and small excitations
of the totally symmetric C−C and C−H stretch-
ing q1 and q2. The value of W at these points is
16.8, very close to the value of the points with the
highest propensity found without the Duschinsky
rotation. The new point that we have found for
the extreme rotation is used as an initial point for
a local minimum search for different angles of ro-
tation. In figure 14 we display this local minimum
which is found in our calculations and the value
of the Wigner function at this point versus β, the
rotation angle.

A new jumping point with significant propen-
sity develops only for angles of rotation above
65o. For smaller rotations the point that origi-
nates from a rotation exists as a local minimum
but has a very high value of W which makes the
probability of decaying through this channel neg-
ligible.

The importance of the absolute value of the fre-
quency and the reduced mass of a mode in the de-
termination of its propensity as an accepting mode
was previously discussed [32,33] with implications
for the isotope effect for nonradiative decay [33].

• Duschinsky effect can cause, in general, a
change of the direction of the quantum jump
but for the benzene molecule the angles for
rotation needed for this feature to appear
are non-physical.

VI. SUMMARY AND CONCLUSIONS

The surface jumping method for nonvertical
transitions was applied to recognizing accepting
modes in a model of the S2 → S0 transition in
benzene. In order to do so, we had to extend
the formalism to forbidden transitions. This re-
sults in an additional factor in the FC integrand,
a polynomial of the position and momentum of
the promoting mode of vibration. Surface jump-
ing may involve an excitation of only one mode
of the system, which takes most of the energy, or
it may involve many modes in a concerted jump.
Here we found that the C-H modes undergo the
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jump, as had been surmised through the years by
a variety of experimental and theoretical clues.

We showed that jump takes place in the local
C-H modes: Since the energy gap between the
states is large compared to the vibrational energy
scale and the ratio of the harmonic frequencies
between the surfaces does not differ very much
from one ( 0.7 < ωek /ω

g
k < 1.2 ), the modes with

the largest frequency and smallest reduced mass
are the modes that undergo the jump. The local
C − H in-plane stretching modes take almost all
of the electronic energy. (If a strong pseudo-Jahn-
Teller effect exists, it seems that the energy will be
divided between the local C−H stretching modes
and the q8 and q6 normal modes depicted in figure
9.)

Treating the displacements of the totally sym-
metric modes of the benzene (under the assump-
tion of hexagonal configuration for the excited
state) as free parameters we found that the ex-
citation of a displaced mode is proportional to its
displacement. The system decays by one jump to
a favorable direction while all the other directions
undergo a transition which is almost vertical.

We examined the sensitivity of the method to
different conjectures regarding the unknown pa-
rameters of the excited S2 electronic potential,
including the impact of a possible pseudo-Jahn-
Teller effect on the excited surface and suggested
a possible qualitative detection of pseudo-Jahn-
Teller and Jahn-Teller effects on electronic states
by checking the IR spectrum that follows the IC
from a pJT or JT deformed state. We have also
checked the possible influences of a Duschinsky
mode rotation and concluded that such a rotation
could lead, in some cases, to an opening of a decay
channel which is negligible without the Duschin-
sky rotation. The impact increases with the dif-
ference between the oscillator strengths of the two
modes which mix due to the rotation. However,
in our case of the S2 → S0 IC of the benzene
molecule we found the angle of rotation that would
make a noticeable effect to be non-physical. For
the transition considered here, the influence of the
polynomial term on the direction of the jump can
be neglected. More generally, the maximization
procedure with this additional term is mathemat-
ically equivalent to the consideration of a decay
not from the ground vibrational state but from a
vibrationally excited state.

Some of the issues to be considered in the fu-
ture include a mathematical analysis of different
analytic models [17], transitions from thermal dis-
tributions [34], rotations, and an implementation
of the method to other molecules. Application to
dissociation, the coupling of the vibrational space

of the molecule to additional degrees of freedom
of a medium, the dynamics of the molecular wave-
packet after the quantum jump between the sur-
faces takes place, and the calculation of the rate
using the phase-space method, could also be stud-
ied within this approach. Decay from an excited
state and the influence of the promoting mode,
i.e. the role of polynomial factors in the FC inte-
grand deserves further study. Isotope effects and
the competition between the accepting modes, for
example local C − H and normal q8 and q6 also
deserve farther study.
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q1 q2 q7 q13 q20 q7a q20a W

0.08 -0.31 -0.44 -0.31 -0.44 0 0 17.00
0.08 -0.31 -0.44 0.31 0.44 0 0 17.00
0.08 -0.32 0.22 0.31 -0.22 -0.38 -0.38 17.02
0.08 -0.32 0.22 -0.31 0.22 -0.38 0.38 17.02
0.08 -0.32 0.22 -0.31 0.22 0.38 -0.38 17.02
0.08 -0.32 0.22 0.31 -0.22 0.38 0.38 17.02

TABLE I. Local maximum or jumping points ob-
tained for the S2 → S0 transition using the potential
of section 4.3. The points are given in the normal
mode representation

s1 s2 s3 s4 s5 s6 W

-0.76 0. 0. 0. 0. 0. 17.00
0. 0. 0. -0.76 0. 0. 17.00
0. -0.76 0. 0. 0. 0. 17.02
0. 0. -0.76 0. 0. 0. 17.02
0. 0. 0. 0. -0.76 0. 17.02
0. 0. 0. 0. 0. -0.76 17.02

TABLE II. The points of table 1 in the local mode
representation.

FIG. 1. Two kinds of transitions: vertical and
non-vertical. (a) Radiationless vertical transition be-
tween crossing surfaces. The transition takes place
by continuous changes of the coordinates and via the
point of crossing between the surfaces. (b) Radiation-
less non-vertical transition for nested surfaces - surface
jumping. The transfer of the energy must occur by a
sudden change of position or momentum. The direc-
tion of the jump is not obvious a priory. Our purpose
is to predict this direction. (c) Radiative vertical tran-
sition, equivalent to the radiationless case (a): most of
the energy goes to the emitted photon. The transition
takes place by continuous changes of the coordinates
and via the point of crossing between the dressed ini-
tial surface and the final accepting energy surface. (d)
Radiative non-vertical transition, equivalent to the ra-
diationless case (b): such transitions occur in the blue
wing of an absorption band, where some of the energy
of the absorbed photon is transferred into vibrational
energy via surface jumping.

FIG. 2. Geometric representation of the method for
finding the direction of the quantum jump in two di-
mensions (Q1, Q2). The outer dashed ellipse repre-
sents the constraint HF (Q1, Q2) = E. The inner
solid ellipses represents the contours of the Wigner
function on the upper surface. (a) The case of strong
maximum. The value of the Wigner function decreases
rapidly with the distance from the jumping point. The
jumping point is well defined. (b) Weak maximum -
the jumping point is not well defined.

FIG. 3. The C − H in-plane stretching normal
modes. q2 (a1g)and q13(b1u) are two non-degenerate
modes. q2 is the totally symmetric C −H stretching.
q7(e2g) and q20(e1u) are two degenerate modes.

FIG. 4. Results of the calculation for the S2 → S0

transition taking the potentials of section 4.3 with the
displacement of the C − C totally symmetric mode
considered as a free parameter. The coordinates and
the value of the Wigner function at the jumping point
are plotted vs. the C − C displacement between the
two surfaces. The excitations of the local C −H and
totally symmetric C − C stretching and the value of
the Wigner function − ln ρ = W at the jumping point
are displayed in solid, dashed, and close-circles lines,
respectively. The excitation of the displaced mode
linearly depends on its displacement.
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FIG. 5. Same as figure 5 with the displacement of
the C − H totally symmetric mode considered as a
free parameter. The coordinate and the value of the
Wigner function at the jumping point are plotted vs.
the C −H displacement between the two surfaces.

FIG. 6. Same as figures 5 and 6 with the energy
gap between the electronic surfaces considered as a
free parameter. The coordinate and the value of the
Wigner function at the jumping point are plotted vs.
the energy gap between the surfaces. The value of the
Wigner function at the jumping point exponentially
depends on the energy gap.

FIG. 7. Local C − H stretching potentials. The
harmonic, anharmonic, and Morse potentials for the
local C − H stretching of the S0 and S2 electronic
states are shown in solid, dotted-dashed, and dashed
lines, respectively. The anharmonicity of the upper
surface is plotted here as if equal for the two electronic
states, but is considered as a free parameter in the
calculations.

FIG. 8. (a) Results of the calculation for the
S2 → S0 transition taking the Morse potentials for
both surfaces. The coordinate and the value of the
Wigner function at the jumping point are plotted
vs. the anharmonicity xe of the upper electronic sur-
face. The excitations of the local C −H, totally sym-
metric C−C stretching, normal C−H stretching and
the value of the Wigner function − ln ρ = W at the
jumping point are displayed in solid, dotted, dashed
and close-circles lines. (b) Wigner function for the
Morse oscillator with ω = 3212 cm−1 and different
anharmonicities xe.

FIG. 9. The two normal modes that may
have non-zero displacements due to a possible
pseudo-Jahn-Teller effect on the S2 surface potential.
q6 is a ring deformation mode and q8 is a ring stretch
mode. Both modes belong to the e2g representation
for the D6h symmetry and to the ag representation of
the D2h symmetry.

FIG. 10. Results of the calculation for the S2 → S0

transition taking the potentials of section 4.3 and in-
cluding a pseudo-JT deformation of the benzene an-
gles. The coordinate and the value of the Wigner
function at the jumping point are plotted vs. the dif-
ference between the angles of the benzene molecule.
The excitations of the local C − H, totally symmet-
ric C − C stretching, q6 and the value of the Wigner
function − ln ρ = W at the jumping point are dis-
played in solid, dotted, dashed and close-circles lines,
respectively.

FIG. 11. Same as figure 11 but with a pseudo-JT
deformation of the C−C bond lengths of the benzene.

FIG. 12. The two normal modes considered here to
be involved in a possible Duschinsky mode rotation.
Both modes belong to the b2u representation, q14 is
a ring stretching mode, and q15 is a C − H bending
mode.

FIG. 13. Geometric demonstration of the Duschin-
sky mode rotation in two dimensions. The solid lines
represent the contours of the Wigner initial function
on the excited electronic surface. The outer dashed
ellipse represents the constraint surface for the lower
surface HF = E. Implementation of the Duschinsky
rotation is done by rotating the inner ellipse by β.

FIG. 14. Results of the calculation for the S2 → S0

transition taking the potentials of section 4.3 and in-
cluding a Duschinsky mode rotation between q14 and
q15. The coordinates and the value of the Wigner func-
tion at the jumping point are plotted vs. the rotation
angle β. The excitations of the local C − H, totally
symmetric C −C stretching, q14, q15 and the value of
the Wigner function − ln ρ = W at the jumping point
are displayed in solid, dashed, dotted, dotted-dashed
and close-circles lines, respectively.
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