(* Testing results of Segev - Heller paper *) (* Phase space results (constrained minimium of the Wigner function) *) (* Input: x0, y0 - displacements omx, omy - frequencies nmax - quantum number of the acceptor state Example of input line: {x0, y0, omx, omy} = {1.1519, 1.2649, 0.4689, 0.5555};nmax=10; *) (* Load a package to find constraint minimum for harmonic oscillators *) < In phase space: "<>printF[r1cl,6,2]<> "% of energy goes to x-mode. ln ro(q*,p*) ="<>printF[lnicl,8,2]<>"."]; ]; {f11, f22, f33, f44} = {omx - la, omy - la, 1/omx - la, 1/omy - la}; gradh = Sqrt[qx^2 + qy^2 + px^2 + py^2]; a = (qx^2 f22 f33 f44 + qy^2 f11 f33 f44 + px^2 f11 f22 f44 + py^2 f11 f22 f33)/gradh^2; If[a>0, lnidelt = -2 w - 1/2 Log[Pi a] - Log[gradh]; Print[" "<> "ln I (Delta-appr.) ="<>printF[lnidelt,8,2]<>"."], Print[" "<> "ln I (Delta-appr.) = Undefined (alpha=0)."] ]; Print[" Minimum of W: (qx, px) = ("<> printF[qx,5,2]<>", "<>printF[px,5,2]<>")"]; Print[" (qy, py) = ("<> printF[qy,5,2]<>", "<>printF[py,5,2]<>")"]; Print[""]; ax = Sqrt[qx^2 + px^2]; phix = If[ax==0,0,ArcCos[qx/ax]]; If[px < 0, phix = -phix]; ay = Sqrt[qy^2 + py^2]; phiy = If[ay==0,0,ArcCos[qy/ay]]; If[py < 0, phiy = -phiy];