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1. Introduction

Molecules are made of heavy particles, the nuclei, and light particles, the electrons. In

the Born - Oppenheimer approximation one uses this separation of scales in mass and

hence in velocities to obtain electronic terms. Each electronic term corresponds to some

wavefunction of the electrons: S0 is the ground electronic state, S1 and S2 the first and

second singlet excited states, etc. For a given electronic term, the nuclei are moving on a

potential surface created by the electrostatic repulsion between them and the attractive

force of the chemical bounds that the electrons create. As long as the molecule stays at

the same electronic state, the motion of the nuclei can be analyzed by propagating wave

packets or by a semi-classical solution for the Schrödinger equation or a classical solution

of the equation of motion with a given potential. What happens to the nuclei during an

electronic transition, say a radiative one, in which a photon is emitted or absorbed, or

in a radiationless (forbidden) transition? Usually, nothing. Since the nuclei are so heavy

and the electronic transition is so fast, the initial conditions for the motion of the nuclei

on the accepting potential surface are then given by the position and the velocity of the

nuclei on the donor potential surface. This is called a vertical transition. Sometimes,

however a vertical transition can not take place, for example when it violates energy

conservation. In this case, the nuclei must “jump” during the electronic transition. The

jump can be a change in position or momentum of one or many nuclei on the fast time

scale of the electronic transition. Predicting this jump for each molecule and transition

is a difficult problem and an old one in molecular physics and photochemistry. We

have developed a simple method to predict this jump. In a number of cases our results

indicate that the dimension of the problem reduces considerably: if only one nucleus

moves out of, say 14, in a given molecule, we need not consider the other 13 nuclei

with the same careful detailed analysis when calculating and studying properties of the

transition. Usually one form of motion of the nuclei, which is called the accepting mode

(and need not be a normal mode) does all the “jumping”, while the rest of the degrees

of freedom undergo a practically vertical transition. The theory of surface jumping, as

we call this process, was developed in Ref. [1], where it was also applied to a simple

model. Recently, we have applied it to a 30-dimensional model of the benzene molecule.

The mechanism of surface jumping is important for applications in molecular

physics and photochemistry [2, 3]. The subject of this paper however is not the

application of this mechanism to specific molecules but the general mathematical

problem one is facing when analyzing these jumps. We aim here at a rigorous

formulation of the problem and its general formal solution. The physical system

is presented in section 2, the mathematical formulation of the problem is given in

section 3. The complete solution in the harmonic approximation, examples of simple

cases, and corrections due to anharmonicity are respectively studied in sections 4, 5,

and 6. Section 7 concludes.
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2. The physical system

Let us consider a molecule described by a potential V (R, r) where R and r are

coordinates of the nuclei and electrons respectively. In the adiabatic approximation,

the quantum states of the molecule are determined in two steps. First, the Schrödinger

equation is solved with respect to the coordinates of the electrons for an arbitrary frozen

configuration of the nuclei described by coordinates R that are treated as parameters

of the Schrödinger equation. The result is an eigenfunction ϕn(r ;R) and an eigenvalue

Un(R) where n is a set of electronic quantum numbers. The second step is to solve the

Schrödinger equation with respect to the coordinates of the nuclei, R, in an effective

potential Un(R) (which was found in the first step), and to find eigenfunctions χN,n(R)

and eigenvalues EN,n where N is a set of vibrational and rotational quantum numbers

of the nuclear motion (in this equation, n are parameters because the potential Un(R)

depends on n). The result of the adiabatic approximation is the wavefunctions in the

form

ΨN,n(R, r) = χN,n(R)ϕn(r ;R) (1)

and the corresponding energies EN,n. Even when the adiabatic approximation does not

apply, one can use these wavefunction as a basis set.

We study the following problem. Let some initial state Ψ(NI,nI) of a molecule have

quantum numbers (NI, nI). Now, suppose that there exist several possible final states

with another set of electronic quantum numbers nF and different sets of nuclear quantum

numbers NF, e.g.

(N (1)
F , nF), (N (2)

F , nF), (N (3)
F , nF), ... (2)

Since the state Ψ(NI,nI) is actually a mixed quantum state due to small nonadiabatic

effects, in the process of its evolution in time there is nonzero probability of finding the

molecule in one of states (2) even if it was initially prepared in the state (NI, nI).

According to the theory of radiationless transitions [4], this probability is maximal for

states having the same energy as the initial state (NI, nI), and is proportional to the

density of final states multiplied by the square of the Frank - Condon integral – an

overlap integral between the nuclear components of the wavefunctions,∫
χNI,nI

(R)χNF,nF
(R)dR, (3)

where here and in the following all integrals are from −∞ to +∞.

The purpose of this work is to develop a method of choosing a state (N∗F, nF) or

a superposition of such states among all possible final states (2) satisfying the energy

conservation condition

E (N∗F, nF) = E (NI, nI) (4)

for which the square of the integral (3) reaches its maximum. This state is the most

preferable accepting mode for a radiationless transition.
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The idea of our approach is to use the Wigner transformations of the wavefunctions.

The Wigner transform of a given wavefunction ψ(R) is defined as

ρ(R,P ) =

(
1

2π

)N ∫
dηe−iP ·�ψ(R+ η/2)ψ(R− η/2), (5)

where N is the number of independent coordinates. Here and henceforward we use units

where ~ = 1. In the Wigner representation an overlap integral squared can be rewritten

as an integral over phase space coordinates,∣∣∣∣
∫
ψ∗1ψ2dR

∣∣∣∣
2

= (2π)N
∫ ∫

dRdP ρ1ρ2, (6)

where ρ1 = ρ1(R,P ) and ρ2 = ρ2(R,P ) are Wigner transforms of the functions

ψ1 = ψ1(R) and ψ2 = ψ2(R), respectively.

The total rate of transition from a state (NI, nI) to a manifold of states (NF, nF)

with a definite nF and all possible NF is proportional to a sum∑
E(NF,nF)=E

(∫
χNI,nI

(R)χNF,nF
(R)dR

)2

. (7)

where both the Frank-Condon factor and the density of final states are included in the

expression, E = E (NI, nI), and χNI,nI
(R) is assumed to be real. In terms of Wigner

functions (7) is proportional to

(2π)N
∫ ∫

dRdP ρNI,nI

∑
E(NF,nF)=E

ρNF,nF
, (8)

where ρN,n = ρN,n(R,P ). Here we study the expression in (8) to be integrated. We

are especially interested in finding a maximum of this integrand. Importance of the

point of maximum of the phase space integrand was stressed in the paper [1] where the

phase space derivation of propensity rules for energy transfer processes between Born -

Oppenheimer surfaces was presented.

We use the following approximation for the second factor in the integrand of (8):

(2π)N
∑

E(NF,nF)=E

ρNF,nF
(R,P ) = δ (HF(R,P )− E) (9)

which is equivalent to replacing this function by the zero-order classical term of its

semiclassical expansion in powers of ~2 [5, 6]. The approximation (9) reduces the integral

(8) to ∫
HF(R,P )=E

|∇HF|−1ρNI,nI
(R,P )dRdP , (10)

where |∇HF| = [(∇RHF)2 + (∇PHF)2]
1/2

is the gradient of the function HF in phase

space. The rest of the paper is devoted to finding a maximum of the Wigner function

ρNI,nI
(R,P ) on an equipotential surface defined through the equation HF(R,P ) = E

for both harmonic and anharmonic potentials. In doing so we set the ground for the

future analysis of radiationless transitions of specific large polyatomic molecules. In

addition, we formulate and prove some general yet simple thumb rules for predicting

the accepting mode of a given radiationless transition.
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3. Formulation of the problem

The Hamiltonian of the acceptor is approximated by a harmonic oscillator plus third

order anharmonic terms,

HF =
1

2

N∑
i=1

(
p2
i + ω2

i q
2
i

)
+

1

6

N∑
i,j,k=1

vijkqiqjqk, (11)

where pi and qi are mass weighted normal momenta and coordinates, qi = Ri
√
mi and

pi = Pi/
√
mi. Similarly, the Hamiltonian of the donor surface is

HI =
1

2

N∑
i=1

(
p′i

2
+ ω′i

2
q′i

2
)

+
1

6

N∑
i,j,k=1

v′ijkq
′
iq
′
jq
′
k. (12)

The mass weighted normal coordinates p′i = P ′i/
√
m′i and q′i = R′i

√
m′i are generally

some linear combinations of pi and qi,

q′ = S
(
q − q(0)

)
,

p′ = Sp (13)

where S is an orthogonal N ×N matrix (ST = S−1) and the vector q(0) corresponds to

the change of the equilibrium structure of the molecule relative to the donor state. An

element Sij �= δij only when the ith and jth normal coordinates have the same symmetry

(so called Duschinsky rotation). The same matrix transforms both q and p since the

transformation preserves the commutation relations [q′i, p
′
j] = [qi, pj ] = i~δij and since

the Hamiltonians (11) and (12) have the same kinetic energy term,
∑N

i=1 p
2
i =

∑N
i=1 p

′
i
2.

We restrict ourselves to the ground state in the donor potential,

χNI,nI
(q) = C exp

(
−1

2

N∑
i=1

ω′iq
′
i
2

)
+ χ1, (14)

where C is a normalization factor, and χ1 is the first anharmonic correction (a linear

function of the coefficients vijk) derived in section 6 below. The Wigner transform of

χNI,nI
(q) is C ′ exp (−2W ) where C ′ is a constant pre-factor,

W =
1

2

N∑
i=1

1

ω′i

(
p′i

2
+ ω′i

2
q′i

2
)

+W1 (15)

and W1 is the first anharmonic correction derived in section 6 below.

The jumping between the donor and acceptor states occurs at a point of minimum

of W subject to a constraint HF = E. There are several approaches to solve a problem

of constraint minimum [7]. One could use a method of direct substitution by eliminating

one of the variables from the function W . This method is not symmetrical with respect

to the treatment of the variables {xi} (i = 1, 2, . . . ,M , M = 2N) that are arguments of

the functions W and H, i.e. {qi, pi} for i = 1, 2, . . . , N (later these collective variables

will be redefined). To avoid distinction between the variables, we use a method of

Lagrange multiplier by introducing an undetermined constant λ and forming a function
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F (x, λ) = W (x) − λH(x). This function is to be made stationary with respect to all

variables {xi}, so that

∂F

∂xi
(x∗, λ∗) = 0 (16)

for i = 1, 2, ...,M , and the constant λ∗ is to be selected so that

H (x∗) = E (17)

Conditions (16) and (17) provide a system of M + 1 equations for M + 1 unknowns,

x∗1, x
∗
2, ..., x

∗
M, and λ∗ which can be briefly summarized as:

∇W = λ∇H, H = E (18)

The Lagrange multiplier λ has concrete physical meaning. Since

d

dE
W (x∗) =

M∑
i=1

∂W

∂xi
(x∗)

dx∗i
dE

= λ∗
M∑
i=1

∂H

∂xi
(x∗)

dx∗i
dE

= λ∗
d

dE
H (x∗) = λ∗, (19)

the parameter λ∗ is the sensitivity of the minimum value of W to the energy gap.

After finding all the stationary points x∗ it is necessary to determine for each point

whether it is a minimum of the function W under restriction (17), a saddle point or a

maximum, and which of all the local minima gives the smallest value for W . The global

minimum found in this way is a true solution of the optimization problem, see figure 1.

In order to efficiently find this jumping point it is convenient to use variables xi
with which both HF and W assume a particularly simple form:

HF =
1

2

M∑
i=1

x2
i +H1 = E, (20)

W =
1

2

M∑
i=1

αi (xi −Xi)
2 +W1, (21)

where H1 and W1 are anharmonic corrections.

The transformation from qi and pi (i = 1, 2, ..., N) to xi (i = 1, 2, ...,M = 2N)

is performed in the following way. In normal coordinates of the acceptor, and after

defining q̃i ≡ ωiqi, equations (11) and (15) read:

HF =
1

2

N∑
i=1

(
p2
i + q̃2

i

)
+H1, (22)

W =
1

2

N∑
i,j=1

(
W (q)
ij

(
q̃i − q̃(0)

i

)(
q̃j − q̃(0)

j

)
+W (p)

ij pipj
)

+W1, (23)

where

W (p)
ij ≡

N∑
k=1

1

ω′k
SkiSkj, W (q)

ij ≡
N∑
k=1

ω′k
ωiωj

SkiSkj . (24)
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Defining x̃i = q̃i, x̃
(0)
i = q̃

(0)
i and Wij = W

(q)
ij for (i, j = 1, 2, ..., N); x̃i = pi x̃

(0)
i = 0 and

Wij = W
(p)
ij for (i, j = N + 1, N + 2, ..., 2N); and Wij = 0 otherwise, we get:

HF =
1

2

M∑
i=1

x̃2
i +H1,

W =
1

2

M∑
i,j=1

(
Wij

(
x̃i − x̃(0)

i

)(
x̃j − x̃(0)

j

))
+W1.

It is now straightforward to obtain equations (20) and (21) by diagonalizing the matrix

W with the elements Wij . Namely, construct a unitary matrix U so that U−1WU is a

diagonal matrix with diagonal matrix elements αi(i = 1, 2, ...,M) . The new coordinates

xi (i = 1, 2, ...,M = 2N) are then given by x ≡ U−1x̃, and X ≡ U−1x̃(0).

Note that the new coordinates do not maintain their relations as conjugate

coordinates and momenta. Notice also, that this transformation could be performed

starting from any coordinate system (not necessary normal coordinates of the acceptor).

-2 -1 0 1 2
x1

-2

-1

0

1

2

x 2

Figure 1. Finding the minimum of the function W under the energy constraint
H = E. For this example, W (x1, x2) = 0.4(x1 − 0.1)2 + 0.6(x2 − 0.2)2 + 0.05[(x1 −
0.1)3 + (x1 − 0.1)2(x2 − 0.2) + (x1 − 0.1)(x2 − 0.2)2 − (x2 − 0.2)3], H(x1, x2) =
1
2x

2
1 +

1
2x

2
2 + 0.1[−x3

1 − 3x2
1x2 + 2x1x

2
2], and E = 1. Dashed lines represent stationary

points of the function F =W−λH, equation (16). Energy-constraint points satisfying
equation (17) lie on the border of the dark area, H < E (the darker is the color, the
greater is the function W ). Ellipses represent curves of constant W . Stationary points
of the function W under the energy constraint are marked by circles. A point with
the smallest W marked by a large circle is the solution of the problem: x∗1 = −1.24,
x∗2 = −0.08, W ∗ = 0.62.
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4. Harmonic approximation

In this section we solve the problem of finding the accepting modes for a radiationless

transition in the harmonic approximation. Results of the harmonic approximation are

later used as the zero-order terms in a perturbative approach to the anharmonicities.

4.1. Finding the minimum of W

We are looking for a minimum of W , where

W =
1

2

M∑
i=1

αi (xi −Xi)
2 , (25)

subject to the constraint

HF =
1

2

M∑
i=1

x2
i = E, . (26)

The parameters characterizing the transition are the energy gap E, the normalized

displacements {Xi} between the acceptor and donor potential surfaces and the

parameters {αi}. These parameters define the minimization problem that determines

the jumping point x∗ characterizing the nature of the transition.

It is interesting to notice that in another coordinate system, yi = α1/2
i (xi−Xi), the

problem has a simple geometrical interpretation: finding the minimum of W = 1
2

∑
y2
i

under the constraint HF = E is equivalent to finding the point on the ellipsoid∑
(α−1/2

i yi + Xi)2 = E of the closest approach to the origin, i.e. the distance from

this ellipsoid to the origin. Let us implement the method of the previous section for the

quadratic functions given by formulas (25) and (26).

The equations for the stationary point, (16),

αi (x
∗
i −Xi)− λ∗x∗i = 0. (27)

are solved explicitly,

x∗i =
αi

αi − λ∗
Xi. (28)

for i = 1, ...,M if λ∗ �= αi. By substitution of (28) into (26), we get an equation for λ∗,

h(λ∗) = E. (29)

where the function h(λ) is the Hamiltonian H expressed through λ,

h(λ) =
1

2

M∑
i=1

(
αi

αi − λ

)2

X2
i . (30)

By substitution of (28) into (25), the value of the function W at its stationary point is

expressed as a function of λ,

W ∗ = w(λ∗), (31)
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where

w(λ) =
1

2

M∑
i=1

αi

(
λ

αi − λ

)2

X2
i . (32)

Since equation (29) reduces to a polynomial equation of degree 2M , it has at most

2M real roots each of which corresponds to some stationary point x∗ given by (28). Let

λ1 and λ2 be two different roots of equation (29), i.e. h(λ1) = h(λ2) = E. In order to

select the smallest of the corresponding values of W , w(λ1) and w(λ2), we notice that

w(λ2)− w(λ1) =
1

2
(λ1 + λ2) [h(λ2)− h(λ1)]

+
1

4
(λ2 − λ1)3

M∑
i=1

[
αiXi

(αi − λ1) (αi − λ2)

]2

. (33)

Validity of the identity (33) can be easily checked by substituting expressions (30) and

(32) for the functions h and w. Since h(λ2)− h(λ1) = 0 and the sum over i is positive,

w(λ2)− w(λ1) has the same sign as λ2 − λ1. Thus for harmonic potentials, the smaller

is the root λ∗, the smaller is the function W .

For convenience, we re-enumerate henceforth the variables (αi, Xi, xi) (i =

1, 2...,M) so that α1 = α2 = . . . = αL = αmin and αj > αmin for j > L, where

αmin is the minimal number among αi (i = 1, 2...,M), and L is the number of entries of

αmin in the set {αi} (i = 1, 2...,M). When λ increases from −∞ to αmin, the function

h(λ) monotonously increases from 0 to

E1 =
1

2

∑
i>L

(
αi

αi − αmin

)2

X2
i (34)

if X1 = X2 = . . . = XL = 0, otherwise it increases from 0 to E1 =∞.

There are two possible cases. In the first case, when X1 = X2 = . . . = XL = 0

and E > E1, the minimal root of (17) is λ∗ = αmin, x∗j for j > L are expressed through

λ∗ by (28), and from (26) we get a set of possible (x∗1, x
∗
2, . . . , x

∗
L). In the second case,

when E ≤ E1, there is a unique root λ∗ of equation (29) on the interval (−∞, αmin),

the coordinates of this minimum are expressed through λ∗ by (28), and the minimum

of W is given by (31).

4.2. Results

Let us summarize the solution in the harmonic approximation. Given an initial Wigner

function and an accepting Hamiltonian, applying a harmonic approximation and a

change of variables, re-enumerating the variables so that α1 = α2 = . . . = αL equal

to the smallest of all αi, and explicitly solving equations (25) and (26), we get the

jumping point for the radiationless transition. There are two cases:

Case I
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In this case (when X1 = X2 = . . . = XL = 0 and E > E1) there exist several points

of minimum with the same value of W . If L = 1, then two jumping points differ in sign

of the first coordinate

x∗1 = ± [2 (E − E1)]1/2 . (35)

For i �= 1 coordinates are

x∗i =
αi

αi − αmin
Xi. (36)

If L > 1, then (x∗1, x
∗
2, . . . , x

∗
L) fill a L− 1-dimensional sphere of radius [2 (E −E1)]1/2,

1

2
(x2

1 + x2
2 + . . . + x2

L) = E − E1, (37)

which follows from equation (26). The rest of coordinates, for i > L, are defined

unambiguously by equation (36).

The minimum of W is

W ∗ = αminE −
αmin

2

∑
i>L

αiX2
i

αi − αmin
. (38)

Below, for example in equation (49), we assume that L = 1, or that αi > α1 for

i = 2, 3, . . . ,M .

Case II

This case applies when at least one of Xi with i ≤ L is nonzero, or when

X1 = X2 = . . . = XL = 0 and E ≤ E1. The coordinates at the jumping point are

given by equation (28):

x∗i =
αi

αi − λ∗
Xi, (39)

where λ∗ ≤ αmin is the unique root of the equation:

1

2

∑
i

(
αi

αi − λ

)2

X2
i = E. (40)

4.3. Discussion

In a radiative vertical transition, only displaced modes are excited. The initial conditions

for dynamics on the accepting potential energy surface, which we call the jumping point

are then given by:

x∗i = Xi, (41)

The energy that goes into vibration and the value of the logarithm of the Wigner function

at the jumping point are then given respectively by:

E0 =
1

2

M∑
i=1

α2
iX

2
i , W0 =

1

2

M∑
i=1

αiX
2
i . (42)

Energy is conserved because the photon takes the rest of the energy

Ephoton = E −E0, (43)
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where E is the energy gap between minima of the donor and accepting surfaces.

In a radiationless transition there is no photon. The released electronic energy

must become vibrational energy. The two cases I and II differ in how this energy is

distributed between the different vibrations.

In case I, despite the fact that X1 = 0, i.e. there is no displacement along the x1

direction in phase space (be it a coordinate or a momentum), x1 is an accepting mode

for this transition because the initial phase space quasidistribution comes closest to the

final energy hypersurface in this direction. We shall refer to x1 as the major accepting

mode. This mode that absorbs the excess energy E −E1 plays the same role as electro-

magnetic field modes during a radiative transition, when an emitting photon accepts

the excess energy relative to the vertical transition.

In contrast, case II does not look essentially different from a vertical transition.

Namely, only displaced modes are involved in the transition, and the jump for each

coordinate involved is proportional to this mode’s displacement. No momentum jumps

exist, since the Hamiltonians are never displaces along a momentum phase space

coordinate. The smaller is |λ∗|, the closest is the transition to a vertical one, as

αi/(αi − λ∗) is closer to 1. Physically a small |λ∗| corresponds to the special case when

HF (X) = E.

4.4. Dependence on the energy gap

In case I the dependence on the energy gap is trivial. All the phase space coordinates at

the jumping point but one do not depend on the energy gap but only on their respective

displacements and the relative difference of the parameters αi between each one of them

and the major accepting mode. x∗1, the jumping coordinate of the major accepting mode

grows with the energy gap. The larger is the energy gap - the more important is this

accepting mode.

In order to consider the properties of the jumping point as a function of the energy

gap E in case II, for both limits of small and large E equation (40) is rewritten here in

a simplified form

M∑
i=1

(
βi

αi − λ

)2

= 1, (44)

where βi = αi |Xi| (2E)−1/2.

For a small energy gap, equation (44) has two real roots λ = ± (
∑
β2
i )

1/2
. The

solution corresponding to the minimal (negative) root asymptotically behaves as

λ∗ = − (E0/E)1/2 , (45)

x∗i = αiXi (E/E0)1/2 , (46)

W ∗ = W0 − 2 (EE0)1/2 . (47)

In the limit of a large energy gap, when βi → 0, equation (44) has 2M roots

λ = αi ± βi, (i = 1, 2, ...,M). The minimal root corresponding to the minimum of W
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is λ∗ = α1 − β1. It is clear that X1 = 0 belongs to the case I for sufficiently large E.

A perturbative solution, with ε = signX1(2E)−1/2 as a small parameter shows that for

X1 �= 0 as well, although λ∗ depends on the energy, this dependence approaches zero

for a large enough energy gap, for which:

x∗1 ≈
√

2E sign(X1), (48)

x∗i�=1 =
αi

αi − α1
Xi −

αiα1

(αi − α1)2

|X1|Xi√
2E

+O(ε2). (49)

Here, again, in the limit of a large energy gap x1 is the major accepting mode regardless

of its being displaced or not. If the displacement X1 = 0 there are two jumping points

with opposite signs, while if X1 �= 0 the sign of the jump is determined by the sign of

the displacement.

5. Simple cases

In the previous section a complete solution in the harmonic approximation was derived.

For any given radiationless transition the accepting mode(s) can be found by applying

this procedure. To gain some intuition, we apply it here to some simple examples.

We separately check the influence of the frequencies, Duschinsky rotations, and the

displacements, on the results. We also check the predictive power of the results on the

energy distribution between the modes, for an example where this energy distribution

is well defined.

5.1. Frequencies

In the simplest case, when the normal coordinates of the initial and the final states are

the same (q = q′, p = p′) and mi = m′i, the set of variables {x1, x2, ..., xM} consists of√
miωiRi and 1/

√
miPi, and the set {α1, α2, ..., αM} consists of ω′i/ω

2
i and 1/ω′i sorted

in ascending order. Since E1 = 0, this system belongs to the case I considered in

the previous section, with x∗1 = ±
√

2E and x∗2 = x∗3 = ... = x∗M = 0. There is

only one accepting mode. In terms of normal mode coordinates it means that if the

minimum number in the set {ω′i/ω2
i , 1/ω

′
i} is α1 = ω′i0/ω

2
i0

, then the launching point for

the transition is at Ri0 = ± (2E/mi0)1/2 /ωi0 and the other coordinates and momenta are

zero. If α1 = 1/ω′i0 , then Pi0 = ± (2Emi0)
1/2 and the other coordinates and momenta

are zero.

5.2. Duschinsky rotation

Now, suppose that q0 = 0 and mi = m′i = m, N = 2, and the matrix S is a unitary

matrix of a general form

S =

(
cosϕ sinϕ

− sinϕ cosϕ

)
,
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where ϕ is a rotation angle. Then, {α1, α2, α3, α4} consists of the following four

numbers: {A±[A2 − a1a2]
1/2
, 1/ω′1, 1/ω

′
2}, where A = 1

2
(a1+a2) cos2 ϕ+ 1

2
(b1+b2) sin2 ϕ,

a1 = ω′1/ω
2
1 , a2 = ω′2/ω

2
2 , b1 = ω′2/ω

2
1 , b2 = ω′1/ω

2
2 . If ϕ = 0, then it is {a1, a2, 1/ω′1, 1/ω

′
2}.

If ϕ = π/2, then it is {b1, b2, 1/ω′1, 1/ω
′
2}.

The next example is numerical. It demonstrates that a Duschinsky rotation can

influence the jumping point and the value of the Wigner function at that point. Suppose

that q0 = 0 and mi = m′i = m, N = 3,

S =


 cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1


 ,

ω1 = 0.6, ω2 = 0.3, ω3 = 0.603, ω′1 = 0.595, ω′2 = 0.298, ω′3 = 0.6 (ω′i are taken slightly

smaller than ωi as it usually happens in molecules). The dependence of {αi} on ϕ is

shown in figure 2. The jumping point for ϕ > 0.033 differs from the jumping point

at ϕ = 0. Here, since αi are independent of the energy, and because of the fact that

dWmin/dE = αmin, Wmin = αminE, and the value of the Wigner function is proportional

to exp(−2αminE).

0 0 .1 0 .2 0 .3 0 .4 0 .5
1 .5

1 .55

1 .6

1 .65

iα

ϕ

)0,( *
2

*
1 ≠qq

)0( *
1 ≠p

)0( *
3 ≠p

)0( *
3 ≠q

[ ] 2/1

21
2 aaAA −−

2
33 /' ωω

2
11 /' ωω

'/1 1ω
'/1 3ω

Figure 2. The dependence of the smallest four eigenvalues αi, i = 1, 2, 3, 4, on
the rotation angle ϕ for the example of section 5.2. The rest of the eigenvalues
{1/ω′2, A+

[
A2 − a1a2

]1/2} are larger than 3. The smallest eigenvalue αmin determines
the minimum of W (Wmin = αminE).



Most probable path in phase space 14

5.3. Displacements

Consider a simple case with non-zero displacement, with N = 2, mi = m′i, and

q0 = (Q, 0), i.e. q′1 = q1 −Q, q′2 = q2. We define:

λ∗ =
ω′1
ω2

1

[
1−

(
m1ω2

1Q
2

2E

)1/2
]
, (50)

σ = min

(
λ∗,

ω′1
ω2

1

,
ω′2
ω2

2

,
1

ω′1
,

1

ω′2

)
. (51)

There are four sub-cases. (1) If σ = 1/ω′1 or σ = λ∗, there is only one non-zero jumping

coordinate

q∗1 = Q/(1− λ∗ω2
1/ω

′
1). (52)

Otherwise, there are two non-zero jumping coordinates q∗1 and (2) q∗2 if σ = ω′2/ω
2
2 , (3)

p∗1 if σ = 1/ω′1,(4) p∗2 if σ = 1/ω′2.

The larger is the displacement and the smaller is the energy gap, the smaller is λ∗,

and q1 becomes the only accepting mode. In contrast, in the limit of a very large energy

gap, the displacement no longer plays a role in the minimization problem predicting the

jump. In this limit, the frequencies alone determine the jump as in the previous case of

zero displacement.

5.4. Predictive power of the jumping point

The latter case with additional simplifications m1 = m2 = 1 and ω1 = ω2 = 1 was

considered in [1]. This paper has plots of the initial wave function,

ΨI(q1, q2) = ψ0(q1 −Q)ψ0(q2) (53)

vs. the final wave function

ΨF(q1, q2) =

n∑
j=0

Cjψj(q1)ψn−j(q2) (54)

where ψi(q) is a harmonic oscillator wave function, E = n + 1, and Cj is an overlap

integral between the ground state ΨI and the excited wave function ψj(q1)ψn−j(q2).

It was demonstrated that the pattern of the final wave function depends on the

position of the phase space jump. Here, we reconsider six numerical examples from

the paper [1] by a quantitative comparison with the phase space results. We calculate

partial energies of excitations along two different modes,

E1 = P−1
E

n∑
j=0

C2
j

(
j +

1

2

)
, E2 = P−1

E

n∑
j=0

C2
j

(
n− j +

1

2

)
, (55)

where PE =
∑n

j=0 C
2
j is the total probability of a transition to EF = E. E1 and E2 are

well defined physical observables because the two dimensional harmonic oscillator here
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Table 1. Accuracy of the prediction by the phase space method of the partition of
energy between different modes for the model of two coupled harmonic oscillators,
HI = 1

2(ω
′
1

2
p2

1+ω′2
2
p2

2+(q1−Q)2+q2
2), HF = 1

2(p
2
1+p2

2+q2
1 +q2

2) for examples studied
earlier in [1]. Percentage of energy going to the first mode is given by equation (57).

Parameters R1 (%)

Label ω′1 ω′2 Q n = 2 n = 6 n = 12 n = 20 n = 30

a 0.02 0.18 0 60.4 74.0 82.5 91.6 94.5
83.3a 92.9a 96.2a 97.6a 98.4a

b 10 2.2 0 71.8 87.8 93.8 96.3 97.5
83.3a 92.9a 96.2a 97.6a 98.4a

c 0.45 0.01 0 25.3 10.4 5.4 3.3 2.2
16.7a 7.1a 3.8a 2.4a 1.6a

d 2 18 0 24.8 10.1 5.2 3.2 2.2
16.7a 7.1a 3.8a 2.4a 1.6a

e 2 0.1 3 82.6 82.0 44.9 27.2 18.3
83.3a 78.4a 42.2a 26.1a 17.7a

f 2 10 3 82.6 82.0 44.9 27.2 18.3
83.3a 78.4a 42.2a 26.1a 17.7a

a The phase space result R∗1.

considered is separable along q1 and q2. They can be calculated exactly and compared

to their phase space counterparts

E∗1 =
1

2

(
p∗1

2 + q∗1
2
)

+
1

2
, E∗2 =

1

2

(
p∗2

2 + q∗2
2
)

+
1

2
, (56)

where q∗1, p∗1, q∗2, p∗2 are the phase space coordinates of the jump,

E = E∗1 + E∗2 = n+ 1.

Notice that the classical energies in equation (56) are corrected by incorporating the

quantum energy of zero vibrations, 1/2. Without the zero vibrational energy, we found

that results are less satisfactory.

We compare the percentage of energy going into the first mode, exact vs phase

space result,

R1 = E1/E, R∗1 = E∗1/E (57)

Table 1 shows that R1 and R∗1 agree within 6% for all examples with N ≥ 20. The

examples are chosen in pairs (a,b), (c,d), and (e,f) to demonstrate that very different

initial states can give similar results for R1 and R∗1.

We have also compared the exact wave functions with the trajectory of a classical

particle moving in the potential HF with the initial conditions of the phase space

coordinates of the jump: at the position (q∗1, q
∗
2), with momentum (p∗1, p

∗
2). The results

are depicted in figure 3. The agreement is remarkable.
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6. Anharmonicity

In this section we study the effect of anharmonicities on the jump. We consider

anharmonic potential surfaces for the donor’s and acceptor’s Hamiltonians, focusing

here on Hamiltonians of harmonic oscillators perturbed by cubic anharmonic terms

as in equations (11) and (12). Generalization to any polynomial anharmonicity is

straightforward.

6.1. The ground-state Wigner function for an anharmonic oscillator

The Hamiltonian of the donor, equation (12), is rewritten in this section as

H(q,p) =
1

2

N∑
i=1

p2
i + V (q),

Figure 3. Density plot of the final wave function. The white dot marks the jumping
point (q∗1, q∗2) that with (p∗1, p∗2) defines the initial conditions for the classical trajectory
shown by light line or ellipse. Here, n = 10. The parameters ω′1, ω′2 and Q are listed
in table 1. For the example (e), we show only one of two symmetric jumping points of
equal significance.
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V (q) =
1

2

N∑
i=1

ω2
i q

2
i + ξV1(q), V1(q) =

1

6

N∑
i,j,k=1

vijkqiqjqk, (58)

where we omit the primes, although we have in mind the excited donor surface which

is marked by primed variables in the previous and subsequent sections. We omit the

subscript “I” in HI and VI too. In (58), we introduce a dummy expansion parameter

ξ = 1.

Rewriting the Schrödinger equation for the ground state wavefunction Ψ(q) in terms

of the function S(q) ≡ − ln Ψ(q) [8] gives the equation:

−1

2

N∑
i=1

(
∂S

∂qi

)2

+
1

2

N∑
i=1

∂2S

∂q2
i

+ V (q)− E = 0. (59)

Without the second sum, equation (59) reduces to the Hamilton - Jacobi equation for the

action of a classical particle moving in the potential E − V (q). In such a quasiclassical

limit, a perturbation theory for S(q) is easily developed [9]. The more general quantum

case which is considered here is still solvable analytically, but the corrections obtained

have more monomial terms.

The function S(q) and the energy E are expanded in powers of ξ,

S(q) = S0(q) + ξS1(q) +O(ξ2), (60)

E = E0 + ξE1 +O(ξ2), (61)

where the zero order terms are

S0(q) =
1

2

N∑
i=1

ωiq
2
i + const, E0 =

1

2

N∑
i=1

ωi, (62)

and the constant in S0(q) is responsible for the normalization of the wavefunction.

Let us find the first order anharmonic corrections. To the first order in ξ,

equation (59) reduces to a linear equation with respect to the number E1 and the

function S1(q):

−
N∑
i=1

∂S0

∂qi

∂S1

∂qi
+

1

2

N∑
i=1

∂2S1

∂q2
i

+ V1(q)− E1 = 0. (63)

Let us suppose that S1(q) is a polynomial, then, as soon as the inhomogeneous part

of equation (63), V1(q) − E1, is a third degree polynomial, it may be shown that the

solution is at most a third degree polynomial too,

S1(q) =

N∑
i=1

Aiqi +
1

2

N∑
i,j

Bijqiqj +
1

6

N∑
i,j,k=1

Cijkqiqjqk . (64)

We substitute (64) and (58) in equation (63) and solve to obtain:

E1 = 0, Ai =
1

2ωi

N∑
j=1

vijj
ωi + 2ωj

, Bij = 0, Cijk =
vijk

ωi + ωj + ωk
. (65)
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Having calculated S1, we would like to calculate the logarithm of the Wigner

function expanded in powers of ξ:

ρ(q,p) = C ′ exp (−2W (q,p)) ,

W (q,p) = W0(q,p) + ξW1(q,p) +O(ξ2), (66)

where

W0(q,p) =
N∑
i=1

exp

(
−p

2
i

ωi
− ωiq2

i

)
, (67)

W1(q,p) is the first anharmonic correction to be determined here. Substituting the

perturbed wavefunction

Ψ(q) = [1− ξS1(q)] exp (−S0(q)) +O(ξ2), (68)

in the definition of the Wigner function, we get

ρ(q,p) ≈
(

1

2π

)N ∫
dηe−ip·� [1− ξS1(q + η/2) − ξS1(q − η/2)]

× exp [−S0(q + η/2) − S0(q − η/2)] , (69)

and, using equation (65),

W1(q,p) =
∑
i,j

vijj
2ωiωj

qi +
∑
i,j,k

vijk
ωi + ωj + ωk

(
qiqjqk

3
− qipjpk

ωjωk

)
. (70)

The complete expression for W = W0 + ξW1 is obtained by substituting (70) in

equation (15) and changing variables as in section 3 above:

W =
1

2

∑
i

αi(xi−Xi)
2 + ξ

∑
i

γi(xi−Xi) +
ξ

6

∑
ijk

wijk(xi−Xi)(xj−Xj)(xk−Xk),(71)

where xi are variables collecting coordinates and momenta, and Xi are displacements.

We eliminate linear terms in equation (71) by including them into effective displacements

X̃i = Xi + ξγ/α:

W =
1

2

∑
i

αix̄
2
i +

ξ

6

∑
ijk

wijkx̄ix̄jx̄k +O(ξ2), (72)

where x̄i = xi − X̃i. When vijj = 0, X̃i = Xi.

6.2. Anharmonic effects on the jump

There are two effects of anharmonicities on the minimization problem that we solve

using equations (18). First, the initial Wigner function is shifted, redefining the effective

displacement between the two potential surfaces as X̃i instead of Xi. Second, third order

terms are added to the harmonic terms in both W and H. We treat these third-order
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terms by perturbation theory, for the functions H = H(0) +H(1)ξ, W = W (0) + W (1)ξ,

where

H(0) =
1

2

∑
i

x2
i , H(1) =

1

6

∑
i,j,k

hijkxixjxk, (73)

W (0) =
1

2

∑
i

αix̄
2
i , W (1) =

1

6

∑
i,j,k

wijkx̄ix̄jx̄k. (74)

αi, xi, x̄i, wijk were defined above and hijk are linear combinations of vijk.

Equation (18) is equivalent to

αix̄i +
ξ

2

∑
j,k

wijkx̄jx̄k = λ

(
xi +

ξ

2

∑
j,k

hijkxjxk

)
, (75)

1

2

∑
i

x2
i +

ξ

6

∑
i,j,k

hijkxixjxk = E. (76)

The unknown variables xi (i = 1, ...,M) and the Lagrange multiplier λ are searched in

the form

xi = x
(0)
i + x

(1)
i ξ + o(ξ), (77)

λ = λ(0) + λ(1)ξ + o(ξ). (78)

In the zero order approximation (ξ = 0), equations (75) and (76)) are

αix̄
(0)
i = λ(0)x(0)

i ,
1

2

∑
i

x
(0)2
i = E,

where here x̄
(0)
i = x

(0)
i − X̃i. In the first order in ξ, equations (75) and (76) are

αix
(1)
i +

1

2

∑
j,k

wijkx̄
(0)
j x̄(0)

k = λ(0)

(
x(1)
i +

1

2

∑
j,k

hijkx
(0)
j x(0)

k

)
+ λ(1)x(0)

i , (79)

∑
i

x(0)
i x(1)

i +
1

6

∑
i,j,k

hijkx
(0)
i x(0)

j x(0)
k = 0. (80)

Let us find the first correction to the harmonic approximation for the two cases discussed

above using these formulas.

Case (1)

The unperturbed coordinates are given in this case by equations (35) and (36) while

the unperturbed Lagrange multiplier is λ(0) = α1. It then follows from (79) for i = 1

that

λ(1) =
1

2x(0)
1

∑
j,k

(
w1jkx̄

(0)
j x̄(0)

k − α1h1jkx
(0)
j x(0)

k

)
, (81)

and from (79) for i �= 1 that

x
(1)
i =

1

αi − α1

[1

2

∑
j,k

(
α1hijkx

(0)
j x

(0)
k −wijkx̄

(0)
j x̄

(0)
k

)
+ λ(1)x

(0)
i

]
, i �= 1. (82)
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Finally, the remaining unknown variable x
(1)
1 can be found by substituting (82) into

(80),

x
(1)
1 = − 1

x(0)
1

[∑
i�=1

x(0)
i x(1)

i +
1

6

∑
i,j,k

hijkx
(0)
i x(0)

j x(0)
k

]
. (83)

In zero order (harmonic approximation), there are two points of minimum differing

by a sign of x1 with the same Wmin given by (38). In the first order approximation, Wmin

is given by (86) below, and it is no longer the same for the two points, corresponding to

different signs in equation (35). So, a true minimum is the one for which (86) is smaller.

Case (2)

In this case the unperturbed coordinates and Lagrange multiplier are given by

equations (28) and (40). It follows from (79) that

x
(1)
i =

1

αi − λ(0)

[1

2

∑
j,k

(
λ(0)hijkx

(0)
j x(0)

k − wijkx̄
(0)
j x̄(0)

k

)
+ λ(1)x(0)

i

]
, (84)

Inserting (84) into (80), we find

λ(1) =
1

6

(∑
i

x
(0)2
i

αi − λ(0)

)−1∑
i,j,k

x
(0)
i

αi − λ(0)

[
3wijkx̄

(0)
j x̄(0)

k − (2λ(0) + αi)hijkx
(0)
j x(0)

k

]
. (85)

In this case, we determine first λ(1) by equation (85), and then x(1)
i by substituting λ(1)

into equation (84).

W in both cases

In both cases expanding the minimum value of the constrained function W into

power series Wmin = W
(0)
min +W

(1)
minξ+O(ξ2), we find that W

(0)
min is given by equation (31),

and

W
(1)
min =

∑
i

αix̄
(0)
i x

(1)
i +

1

6

∑
i,j,k

wijkx̄
(0)
i x̄

(0)
j x̄

(0)
k . (86)

6.3. Anharmonic potentials with no effective displacements

As a simple example, consider the case of no effective displacements and no Duschinsky

rotation, with x̄i = xi, x
(0)
i = 0 for all i �= 1 and x

(0)
1 = ±

√
2E. The unperturbed

Lagrange multiplier is λ(0) = α1. It then follows that

λ(1) =
1

2
x

(0)
1 (w111 − α1h111) , (87)

x
(1)
i�=1 = − 1

2

x
(0)2
1

αi − α1
(wi11 − α1hi11) , (88)

x
(1)
1 = − 1

6
x

(0)2
1 h111. (89)

W (1)
min =

1

6
x(0)3

1 (w111 − α1h111) . (90)

For ξ �= 0 the two minima W (0)
min + ξW (1)

min corresponding to two different signs of x(0)
1

are not the same, the global minimum is reached when x
(0)
1 has the opposite sign to

ξ(w111 − α1h111).
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6.4. A numerical example

The example of figure 4 shows a typical behavior of the minimum with change of the

anharmonicity. Evolution of the jumping point, or the location of the minimum, is

shown in figure 5. For ξ < 0.1 first order perturbation theory gives good results, but for

larger ξ it breaks both because of presence of nonlinear terms and because of an abrupt

change of position of the global minimum.
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Figure 4. Evolution of the minimum of the function W under the energy constraint
H = E with strengthening of the anharmonicity. In W and H, we introduced
an overall coupling parameter ξ: W (x1, x2) = 0.4(x1 − 0.1)2 + 0.6(x2 − 0.2)2 +
0.05ξ[2(x1 − 0.1)2(x2 − 0.2) − 2(x1 − 0.1)(x2 − 0.2)2 + (x2 − 0.2)3], H(x1, x2) =
1
2
x2

1+
1
2
x2

2+0.1ξ[−x3
1−3x2

1x2−3x1x
2
2+x

3
2], E = 1. The upper left corner section refers

to the harmonic approximation (ξ = 0). Position of the global minimummarked by the
largest circle is a discontinuous function of the anharmonicity since between ξ = 0.52
and ξ = 0.53 as well as between ξ = 0.75 and ξ = 0.76 the global minimum swaps with
one of the secondary local minima. This example shows that for strong anharmonicities
the dependence x∗(ξ) cannot be approximated by an analytic function.
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6.5. Discussion

The following observation can be made: when anharmonicities are small enough to

allow for a perturbative treatment their influence on the jumping point grows with

an increased energy gap, linearly in the energy, and increases for degrees of freedom

i for which αi ≈ α1. There is a compensating effect of the anharmonicities on the

two surfaces: their effects occur with opposite signs. Finally, we note that not all

anharmonic potentials could be treated perturbatively, and that for completely general

potential surfaces an analytic treatment becomes impossible. In these cases a numerical

approach is needed.

7. Summary and conclusions

Intramolecular energy transfer is an important part of many chemical processes. Very

often, energy transfer processes in molecules involve degrees of freedom with a separation

of timescales, for example electronic and vibrational-rotational motion. Sometimes, the

electrons transfer much energy to the vibrations and rotations in a sudden process.

This exchange is usually followed by further intramolecular vibrational energy transfer.

The nuclei have to make a leap in coordinate or momentum to reach the other Born -

Oppenheimer surface in such nonvertical transitions, and the direction of the jump from

one surface to another can be very specific.

A procedure for recognizing the jumping points in phase space in the noncrossing

�� �� � � �

��

��

��

�

�

�

[
�

ξ=0

ξ=1 0.52

0.53
0.75

0.76
0.2

Figure 5. The location of the minimum x∗ as a function of the strength of the
anharmonicity ξ (solid line). Here, W , H, and E are the same as in figure 4. The
discontinuity is the result of competition for the global minimum between several local
minima, see figure 4. The dashed line is the result of first order perturbation theory
(section 6 of the paper). After the first discontinuity occurs at ξ = 0.53, this linear
approximation completely fails. There are appreciable errors of this approximation
even at ξ > 0.2 due to presence of quadratic terms.
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regime was introduced in Refs. [1, 10]. Here we have presented a closed-form complete

solution for finding the jumping point for any transition between harmonic potentials

and a perturbative treatment of the nonharmonic effects.

The ingredients needed to predict the quantum jump are the classical Hamiltonian

for the nuclei at the final (accepting) electronic state and the Wigner function of the

initial state exp−2W . In a special coordinate system, described in detail in section 3,

both assume the particularly simple form of equations (20) and (21). In the harmonic

approximation equations (25) and (26) replace equations (20) and (21) allowing for a

closed form, exact solution.

In the harmonic approximation, the parameters characterizing the transition are

the energy gap E, the normalized displacements {Xi} between the acceptor and donor

potential surfaces and the parameters {αi}. For a small energy gap the transition is

almost vertical and the accepting modes are the displaced ones. For a large energy

gap the major accepting mode is the one with the smallest α, in general some mixed

coordinate and momentum for which the initial distribution comes closest to the final

energy surface.

The richness of possible phenomena and excitations comes about from the

transformation of coordinates from the mathematically accessible ones to the physical

coordinates of the atoms in the molecule. Some simple examples were presented.

The harmonic case is completely solved here. Future applications to harmonic

models of specific molecules is now a straightforward procedure. When nonharmonic

potential surfaces are known, it is possible to use the harmonic model and perturbatively

correct for the anharmonicities, only if the anharmonicities are small. More complicated

surfaces require a numerical approach.

The predictive power of the jumping point for energy distribution between different

accepting modes was also demonstrated. Predictions for the physical features of the

radiationless transition based on location of the jumping points deserve farther study.
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