

Figure 1. The dependence of the scaled energy \tilde{E} on the coupling parameter g for n = |m + 1 states corresponding to the ground state of the oscillator $(n_1 = n_2 = 0)$. \tilde{E} is the eigenenergy of the Schrödinger equation with the effective potential

$$\widetilde{V}_{\text{eff}}(\widetilde{\rho},\widetilde{z}) = \frac{1}{2\widetilde{\rho}^2} - \frac{1-g}{\widetilde{r}} + \frac{g}{2}\widetilde{\rho}^2$$

in which 1/m plays the role of the Planck's constant. Chain curve is the ionization threshold shown for m = 1.

Figure 2. The vibrational part of the energy of the even parity states (solid lines) and odd parity states (dashed lines) in the large *m* limit $\varepsilon(g) = (n_1 + 1/2)\sqrt{1 + 3g} + (n_2 + 1/2)\sqrt{1 - g}$ (total scaled energy is $\widetilde{E}(g) = -\frac{1}{2} + \frac{3}{2}g + \varepsilon(g)m^{-1}$). The curves are labeled by harmonic oscillator quantum numbers n_1 , n_2 .

Figure 3. The vibrational part of the energy levels in m = 30 azimuthal subspace obtained by summation of 1/m-expansion. The ionization threshold is shown by chain line.

Figure 4. Similar to figure 3 but for m = 10 subspace. The results of the standard perturbation theory are shown by dotted lines.