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Non−traditional applications of variational
methods were proposed both for critical parameters
(when the energy crosses the ionization threshold) and
for the energy below and above ionization threshold.

If the critical parameter enters the Schrodinger
equation linearly, then the equation for critical
parameters can be considered as a generalized
eigenvalue equation with a non−trivial weight
operator. Consider, for example, a two−electron atom

H = p1
2/2 + p2

2/2 − Z/r1 − Z/r2 + 1/r12

with a chargeZ treated as a continuous parameter.



After scaling transformationr −> Z r, the Schrodinger
equation for the state that reaches the border of

continuum,H ψ = −Zc
2/2 ψ, can be rewritten as

(p1
2/2 + p2

2/2 − 1/r1 − 1/r2 + 1/2)ψ = λ (1/r12) ψ

whereλ = −1/Zc is a generalized eigenvalue. Then, the

expectation value

<p1
2/2 + p2

2/2 − 1/r1 − 1/r2 + 1/2> / <1/r12>

gives an upper bound forλ and correspondingly an
upper bound for the critical chargeZc:

N −λ −λ (D=5)

0 1.04849 0.9700
1 1.09077 0.9993
2 1.09489 1.0028
3 1.09713 1.0046
4 1.09736 1.00486

1.09766 (exact) 1.00524 (exact)



In the above example,N is the size of Hylleraas basis
set. Two nonlinear parameters (exponential factorsa1,

a2) entering the trial function were optimized. Note

that five−dimensional atom (D=5) in its ground state is

equivalent to the excited 2p2 3P state of the
3−dimensional atom.

Accelerating of convergence by Pade approximants
gives very accurate results:

N −λ −λ (D=5) −λ (D=7)

0 1.017 0.934
2 1.095 1.003 0.966
4 1.0974 1.00476 0.9686
6 1.09764 1.00518 0.9694
8 1.097658 1.00522 0.9701
10 1.0976605 1.005243

1.09766079 1.00524 (exact)

Above, nonlinear variational parameters (a1, a2)

are (0.4, 1), (0.2, 0.5), and (0.11, 1/3) forD = 3, 5, and
7 respectively.



For the 7−dimensional atom, the critical charge is
probably one, but the convergence is slower.

The critical charges were found for two−electron
atoms subject to external magnetic field as a function
of magnetic field strength, see Figure 1.

For variational calculations, we used "spherical"
basis set, i. e. products of spherically−symmetric
functions and spherical harmonics. Satisfactory
accuracy was obtained for weak fields less than

0.2 a. u. (4.7.104 T). In addition, we used alternative
approach based on large−dimensional analysis.

Proposed variational principle is optimized in
order to give accurate estimation of the critical
parameter itself rather than the energy.



For ionization energies, an ordinary variational
principle for the energy functional was used, but with
allowance of complex variational parameters. Above
the ionization threshold, a minimum of the energy
functional turnes into a complex stationary point. It
means that the variational method produces complex
energy that approximates position (real part) and half
width (imaginary part) of the corresponding
quasi−stationary state. We calculated variational
energies of few−electron atoms as a function of charge
of the nucleous using simple trial functions in the
form of a product of exponents (including
permutations).

Figure 2 shows results for the ground state of
two−electron ions. A simple trial function exp(−a1 r1
−a2 r2) + exp(−a2 r1 −a1 r2) with two variational

parameters was used. Solid and broken lines are real
and imaginary parts of the energy respectively. Red
lines is the result obtained by summation of the
1/Z−expansion.



Figure 3 shows similar results for the lowest
triplet state of two−electron ions (with antisymmetric
wavefunction).

Note the different behavior near the critical
charge for these states. For the ground state (Figure 2),
energy crosses the ionization border with a non−zero
derivative that is equivalent to existance of a bound
state at the critical pointZ=Zc. For the triplet state

(Figure 3), energy approaches the ionization border
with a zero derivative, and one of the exponential
factors (a1, a2) tends to zero. It means that the wave

function is no more integrable atZ=Zc, and

transformation to unbound state at the critical point is
"continuous". The latter behavior resembles the
second−order phase transition in statistical physics.
Our simple variational calculation gives qualitatively
correct behavior near the critical charge and provides
an estimate of the energy of the quasistationary state.



Similar variational calculations are in progress
for atoms with more than two electrons. Our results
for the ground state of three−electron (lithium−like)
and four−electron (berillium−like) atoms are
displayed on Figures 4 and 5. The critical behavior
for lithium isoelectronic series ("second−order phase
transition") is in agreement with a recent result of
Pablo Serra et al. (Phys. Rev. Lett., in press), while
the critical behavior near Z=Zc for berillium

isoelectronic series ("first−order phase transition") is
qualitatively the same as for the ground state of
helium. In addition, we estimated the energy of the

unstable ion He−−:

EI = −0.198 + 0.038i (a. u.)


