
High Orders of 1/D-Expansion for Three-Body Systems

Aleksey V. Sergeev

S.I.Vavilov State Optical Institute, Tuchkov per. 1, St.Petersburg, 199034 Russia

Introduction

We study the system of three particles in D-

dimensional space interacting by means of an

analytic potential V r r rD( , , )23 31 12 . In the large D

limit, the particles form the stable rigid

configuration corresponding to a minimum of an

effective potential V V D UDeff c= + 2  containing a

centrifugal term U m h m h m hc ( / / / )= + +1
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2  where

h h h1 2 3, and  are altitudes in the configurational

triangle. The quantum oscillations around the

equilibrium are organized as a power series in 1/D.

The first three coefficients of the 1/D-

expansion for helium Hamiltonians were calculated

by Mlodinow and Papanicolaou (1981) using algebraic

approach. More direct approach in coordinate

representation enables to obtain higher orders of

1/D-expansion (Sergeev 1983, seven coefficients;

Googson and Herschbach 1987, eleven coefficients).

The recent effective algorithm (Dunn et al. 1994)

makes possible to calculate up to 31 coefficients

for the ground state of helium. For various non-

helium Hamiltonians, high orders of 1/D-expansion

were obtained by Sergeev (1989) and Mur et al.

(1990).
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Although Padé summation of 1/D-series gives

convergent results, the accuracy is not very high

because the parameter of the expansion 1/D for

D = 3 is not small. So, various ingenious summation

methods taking into account both the pole

singularity at D = 1 and the essential singularity
at D = ∞ were developed (Goodson et al. 1992).

In the first part of this communication, we

outline the way to establish the singularities of

the Borel function to 1/D-series that lead to

factorial divergence of the series

Ek∼∼ Re( ) !/Ca k kk −3 2

where the parameter a is reciprocal to Borel

singularity.

In the second part, we develop Darboux - Borel

summation procedure that properly accounts for

square-root singularity of the Borel function.

In the third part, we discuss the square root

singularities of the energy function for excited

states that lead to non-factorial growth of the

expansion coefficients

Ek∼∼ cD kkc
/−3 2

where Dc is a branch point joining the levels. To

eliminate the divergence for near-crossing levels,

we use a simple trick.

1. Singularities of the Borel function as

an action along classical trajectories
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Typically, the coefficients in 1/D-expansion

grow as factorials, Ek∼∼ Ca k kk β ! (for quasistationary

states) or Ek∼∼ ( * * ) !Ca C a k kk k+ β  (for bound states). To

find the parameters C, a and β, the dispersion

relations were used between Ek and the integral

from the imaginary part of the energy.

Particularly, a−1 coincides with the action

integral standing in the exponent in the

quasiclassical formula for decay rate:

a U r U dr
r

r
− = −∫1

0
1 22

0

1

[ ( ( ) )]eff
/

where U r D V D reff eff() ( )= 2 2  is a rescaled effective

potential, U U r0 0= eff( ) is its minimum, and r1 is a

turning point, U r Ueff( )1 0=  (Popov and Sergeev 1993).

The above formula is written for one-dimensional

effective potential U U reff eff()=  and for

quasistationary states only, when the equation

U r Ueff()= 0 has a real solution except r0. In the case

of multiple solutions of U r Ueff()= 0, one should take

the turning point that yields a dominant term in a

decay rate for which the action integral attains a

minimum.

For bound states, there is a pair of complex-

conjugate turning points, so the large-order

asymptotical formula contains two terms.

The extension of the above quasiclassical

formula to multidimensional potentials was carried

out by Schmid (1986). The application for two-
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dimensional effective potentials for axially-

symmetric problem of a hydrogen atom in parallel

electric and magnetic fields was considered by

Popov and Sergeev (1994).

In the case of three-body systems, we deal with

a three-dimensional quantum decay problem, the

number of variables being equal to the number of

interparticle distances. The central problem is the

solution of the eikonal equation and minimization

of the classical action in order to determine the

parameter a (and the corresponding singularity of

the Borel function δ = −a 1).

Two different approaches were used by Popov and

Sergeev (1994) (for similar two-dimensional

problem). The first one is based on the method of

characteristics. The classical trajectories in an

inverted effective potential are calculated, and a

trajectory is chosen which terminates at a stopping

point and which represents the most probable escape

path. The parameter a equals to the reciprocal of

the action along this trajectory. In the second

approach, the action is expanded as a perturbation

series around the minimum of the effective

potential.

For more difficult problem with three-

dimensional potential, we expect that both of these

approaches may be in principle useful. As a test
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problem, let us investigate in detail the case of

two-electron atoms.

The rescaled effective Hamiltonian for such a

problem is

H r r p p p p p r r p( , , , , , ) ( ) ( )( sin )1 2 1 2 1
2

2
2

1
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r r rr( cos ) /θ

We are beginning to use the method of

characteristics. Our goal is solving six equations

of classical motion

dp
dt

H
x

dx
dt

H
p

kk

k

k

k
= − = =

∂
∂

∂
∂, ( ,2,)1 3

where x r1 1≡ , x r2 2≡ , x3 ≡ θ, and p p3 ≡ θ . We integrate

the equations of motion from an initial point

( , , )(i) (i) (i)x x x1 2 3 , p p p1 2 3 0(i) (i) (i)= = =  (U Ueff
(i)( )x = 0) that is

guessed to be a turning point. We choose the final

point on the complex classical trajectory so that

the distance from ( , , )(f) (f) (f)x x x1 2 3  to the point of minimum

( , , )( ) ( ) ( )x x x1
0

2
0

3
0  be as small as possible. After that, we

vary the initial point to force this distance to

diminish. Finally, we calculate the extremum of the

action S p x dtk k
kt

t

0 = ∑∫
.

i

f

 .

This method needs the knowledge of the guess

turning point. To calculate it, we use large-Z

approximation, when the action is exactly
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S r r r r r r( , , ) ln ln lnsin1 2 1 1 2 21 1θ θ= − − + − − − .

At the point of extremum, ∂ ∂S xk/ = 0. The solution

is: r1
1 1() = , r2

1 1() = , θ π() /1 2= −  (apart from the point

of minimum r1
0 1( ) = , r2

0 1( ) = , θ π( ) /0 2= ). In fact, the

motion from the point x()1  to the point x( )0  is two-

dimensional, because r r1 2=  at any time. Moreover, x

remains purely real except a vicinity of the

singularity at θ = 0 that should be embraced by

complex contour. So, the calculations are

considerably simplified.

The results are given in the following table.

________________________________________________
S p0 = δ

Ζ Real Imaginary Method of calculation
____________________________________________________

2 0.8849 π integral of action (exact)
0.3 3.7 quadratic Padé analysis

3 0.6327 π integral of action (exact)
0.3 3.5 quadratic Padé analysis

10 0.2343 π integral of action (exact)
-0.05 3.3 quadratic Padé analysis

100 0.0325 π integral of action (exact)

∞ 0 π integral of action (exact)
________________________________________________

The estimates for the singularity of the Borel

function obtained by quadratic Padé analysis by

Goodson et al. (1992) are given in the table also.

This singularity is not the singularity nearest to

the origin (δs) that contribute the dominant term
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in the asymptotic formula. The estimates for δs

were obtained both for the ground state of helium

(Goodson et al. 1992) and for excited 1 2 3s s S state

(Goodson and Watson 1993):

________________________________________________
Nearest to the origin singularity

Ζ Real Imaginary Method of calculation
____________________________________________________

2 -0.32362 0.10054 QPA, ground state
-0.308 0.108 QPA, excited state*
? ? exact

3 -0.500 0.161 QPA, ground state
? ? exact

10 -0.821 0.272 QPA, ground state
? ? exact

________________________________________________
* For excited states, a−1 is the same as for a ground state, but

numerical results from QPA may differ because the perturbation

series are different.

The exact value of the nearest to the origin

singularity remains to be calculated by our

approach. We expect to develop the numerical

algorithm in near future.

2. Modified Borel summation procedure

The divergence of 1/D-expansion renders

conventional summation method ineffective beyond

the lowest orders.
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Padé summation considerably improves the

convergence by taking into account poles of the

function.

Further improvement can be achieved by Padé -

Borel summation that properly accounts for

factorial growth of the expansion coefficients. The

method reduces to construction of Padé approximant

to the Borel function and subsequent integration of

the approximant with the decaying exponent.

The increase of the coefficients of the 1/D-

expansion like a k kk −3 2/ ! leads to the square-root

singularity in the Borel function at z a0
1= − . We can

establish the position of this singularity by

evaluation of the classical action along the most

probable escape path.

Here, we propose to use the approximants of the

form

~
() ( )/f z

B
A

C
A

z z= + −0
1 2

where A, B and C are polynomials of degree N

obeying the relation

Af z B C z z O z N( ) ( ) ( )/− − − = +
0

1 2 3 2 .

The same approximants were used by Goodson and

Watson (1993) to sum the energy function for 010

state of helium. They were called Darboux

approximants.
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As an illustration, let us examine

quasistationary states of a hydrogen atom in

parallel electric and magnetic fields. We use 1/n-

expansion that is equivalent to "shifted" expansion

in powers of 1 1/( )D + . We calculate quadratic Padé

approximants (used instead of ordinary Padé

approximants in case of quasistationary states),

Padé - Borel approximants, and Darboux - Borel

approximants constructed from the same number of

terms in the expansion (5 terms or 11 terms). The

results are given in the following two tables, for

magnetic fields B=0.5 and B=1, correspondingly. The

results that are nearest to the numerical solution

found by Anokhin and Ivanov (1983) were underlined.

These best results are exactly Darboux - Borel

approximants in most cases.

Thus, Darboux - Borel approximants take full

advantage from the known singularity structure of

the Borel function, and so the results appear to be

more accurate than the results by another summation

procedures (quadratic Padé and Padé - Borel).

3. Branch points, avoided crossings, and

degenerate perturbation theory for excited

states

For the excited 1 2 1s s S state of helium, 1/D-

series appears to be strongly divergent because of

the presence of a square-root branch point at
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δs = −0011386007.  (Goodson and Watson 1993). Here, we

explain the origin of this singularity as a result

of crossing with another excited level.

To justify our conjecture, we perform analytic

continuation of the vibrational part of the energy,

ε = −( )E E D0  along the contour embracing the branch

point. For this purpose, we use quadratic Padé

approximants (see a figure). The quadratic Padé

approximant has two branches which are the roots of

quadratic equation. The main branch behaves as

ε = − − +−0631 416 1. . ...D  when δ = →1 0/D  (solid line).

One can see that quadratic PA gives correct value

to the branch point δs. Moreover, the second

(supplementary) branch of quadratic PA may be

continued backward from the branch point to the

origin (dashed line), and it gives ′ = + −ε 104 1. ( )O D .

It exactly coincides with the vibrational energy

for the state of the oscillator with quantum

numbers (200): E1
200 104046= . . So, one has to assign

(200) quantum numbers to the second branch of 010

energy function (corresponding to 1 2 1s s S state).

 The origin of this phenomenon is a Fermi-like

resonance between molecular-like vibrational

excitations. If the charge of the nucleus assumes

non-integer value Zc = 157. , then the first two

frequencies of vibrations are related as 1:2. So,

one can expect near-degeneracy of the levels

(n1 0= , n2 1= ) and (n1 2= , n2 0= ) for the nearest to
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Zc integer charge Z = 2 corresponding to helium.

Since near-degenerate states are highly sensitive

to perturbation caused by anharmonic terms in a

potential, the 1/D-expansion diverges.

A convenient way to overcome the divergence is

to consider the sum and the product of the

energies. As their expansions have no more branch

point singularity, they can be easily summed.

Finally, the energies can be calculated from the

corresponding quadratic equation.

Recently, we have studied in detail the pattern

of energy levels, avoided crossings, and branch

points for a hydrogen atom in a magnetic field.

Such system has all essential features of a general

non-separable problem. The enclosed paper was

submitted to J. Phys. B.
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