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| nt r oducti on

W study the system of three particles in D
di mensional space interacting by neans of an
analytic potential Vp(rys,ra,fp). In the large D
limt, the particles form the stable rigid
configuration corresponding to a mninmum of an
effective potenti al Vg4 =Vp +DU, containing a
centrifugal term UC:%(llmlhl2 +1/ mh3 +1/ myh) where

h,h,andh; are altitudes in the configurational
triangle. The quantum oscillations around the
equil i brium are organi zed as a power series in 1/D.

The first three coefficients of the 1/D
expansion for helium Ham |tonians were calcul ated
by M odi now and Papani col aou (1981) using al gebraic
appr oach. More direct approach in coordinate
representation enables to obtain higher orders of
1/ D- expansi on (Sergeev 1983, seven coefficients;
Googson and Herschbach 1987, eleven coefficients).
The recent effective algorithm (Dunn et al. 1994)
makes possible to calculate up to 31 coefficients
for the ground state of helium For various non-
hel i um Ham | toni ans, high orders of 1/D expansion
were obtained by Sergeev (1989) and Mir et al.
(1990).
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Al t hough Padé sunmation of 1/D-series gives
convergent results, the accuracy is not very high
because the paranmeter of the expansion 1/D for
D=3 is not small. So, various ingenious sunation
methods taking into account both the pole
singularity at D=1 and the essential singularity
at D=o were devel oped (Goodson et al. 1992).
In the first part of this communication, we

outline the way to establish the singularities of
the Borel function to 1/D-series that Ilead to
factorial divergence of the series

E, ORe(Cak)k2/2k!
where the paranmeter a is reciprocal to Borel

singularity.
In the second part, we devel op Darboux - Borel

sunmation procedure that properly accounts for
square-root singularity of the Borel function.
In the third part, we discuss the square root

singularities of the energy function for excited
states that lead to non-factorial growh of the
expansi on coefficients

E, OcDkk=3/2
where D. is a branch point joining the levels. To

elimnate the divergence for near-crossing |evels,
we use a sinple trick.

1. Singularities of the Borel function as
an action along classical trajectories
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Typically, the coefficients in 1/D expansion
grow as factorials, E/[OCa‘kPk! (for quasistationary
states) or E/[Ca* +C* a*¥)kPk! (for bound states). To

find the paraneters C, a and [, the dispersion
relations were used between E, and the integral

from the | magi nary part of t he energy.
Particul arly, al coincides wth the action
I nt egr al st andi ng in the exponent in the

quasi cl assical fornula for decay rate:
i
At = [[2Uq (1) - Up) V2
fo

where Ug(r)=D?Vg4(Dr) is a rescaled effective
potential, Ug=Ugk(y) is its mninmum and r, is a
turning point, Ug(n) =U, (Popov and Sergeev 1993).
The above fornmula is witten for one-dinensional
effective pot enti al Uer = Ugi (1) and for
gquasi stationary states only, when the equation
Ugi(r) =Uy has a real solution except r,. In the case
of multiple solutions of Ug(r) =U,, one should take
the turning point that yields a domnant termin a
decay rate for which the action integral attains a
m ni mum

For bound states, there is a pair of conplex-
conjugate turning points, so the [Ilarge-order
asynptotical fornmula contains two terns.

The extension of the above quasiclassical
formula to nultidinensional potentials was carried
out by Schmd (1986). The application for two-
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di nmensi onal effective potentials for axially-
symmetric problem of a hydrogen atom in parallel
electric and nmgnetic fields was considered by
Popov and Sergeev (1994).

In the case of three-body systens, we deal wth
a three-dinensional quantum decay problem the
nunmber of variables being equal to the nunber of
i nterparticle distances. The central problemis the
solution of the eikonal equation and m nimzation
of the classical action in order to determ ne the
paraneter a (and the corresponding singularity of
the Borel function & =a™).

Two different approaches were used by Popov and
Ser geev (1994) (for simlar t wo- di nensi onal
problem). The first one is based on the nethod of
characteristics. The classical trajectories in an
i nverted effective potential are calculated, and a
trajectory is chosen which term nates at a stopping
poi nt and which represents the nost probable escape
path. The paraneter a equals to the reciprocal of
the action along this trajectory. In the second
approach, the action is expanded as a perturbation
series around the mninmum of the effective
potenti al .

For nor e difficult problem wth t hree-
di mensi onal potential, we expect that both of these
approaches may be in principle useful. As a test
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problem let us investigate in detail the case of
t wo- el ectron atons.

The rescaled effective Hamltonian for such a
problemis

1 1, _ o
H(T 2.0, Pr P2y Bo) = 5 (P2 + P3) +5 (572 +172)(pé +sin26)

1 1 1
- = - =+ (17 +rf —2r,cos0) 2
n rn Z
W are beginning to wuse the nethod of
characteristics. Qur goal is solving six equations
of classical notion

dp _ OH  dx, _OH
d - ax.' dt dp

(k =123)

where X, =r, X, =r, X3=0, and p;=p,. W integrate

the equations of notion from an initial point

(O 09), B =P =Py 20 (Ua()=Ug)  that s

guessed to be a turning point. W choose the final
point on the conplex classical trajectory so that
t he di stance from (x(f),xg),xg)) to the point of m ninmum
(x(o),xgo),xgo)) be as small as possible. After that, we
vary the initial point to force this distance to
dimnish. Finally, we calculate the extremum of the

t .
ti = dt .
action S {Zpkxk

This nmethod needs the know edge of the guess
turning point. To calculate it, we wuse large-Z
approxi mati on, when the action is exactly



Sr,r,0)=r-1-Inr, +r, =1 =Inr, —-Insin@.

At the point of extremum 0S/dx =0. The sol ution
is: r¥=1 rP=1 0@=-/2 (apart from the point
of minimum %=1 r?=1 6@=w/2). In fact, the
motion fromthe point x® to the point x©@ is two-
di nensi onal, because r,=r, at any tine. Moreover, Xx
remains purely real except a vicinity of the
singularity at 06 =0 that should be enbraced by
conpl ex cont our. So, t he cal cul ati ons are
consi derably sinplified.
The results are given in the follow ng table.

S = 0p

Z Real |maginary Method of calculation
2 0.8849 T integral of action (exact)
0.3 3.7 quadratic Padé analysis

3 0.6327 T integral of action (exact)
0.3 35 quadratic Padé analysis

10 0.2343 T integral of action (exact)
-0.05 3.3 guadratic Padé analysis

100 0.0325 T integral of action (exact)
00 0 T integral of action (exact)

The estimates for the singularity of the Borel
function obtained by quadratic Padé analysis by
Goodson et al. (1992) are given in the table also.
This singularity is not the singularity nearest to
the origin (&) that contribute the dom nant term
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in the asynptotic fornula. The estimates for 0.

were obtained both for the ground state of helium
(Goodson et al. 1992) and for excited 1s2s3S state

( Goodson and Wat son 1993):

Nearest to the origin singularity
Z Real |maginary Method of calculation

2 -0.32362 0.10054 QPA, ground state

-0.308 0.108 QPA, excited state”
? ? exact

3 -0.500 0.161 QPA, ground state
? ? exact

10 -0.821 0.272 QPA, ground state
? ? exact

* For excited states, a % is the same as for a ground state, but
nunerical results from QPA may differ because the perturbation
series are different.

The exact value of the nearest to the origin
singularity remains to be calculated by our
approach. W expect to develop the nunerical
algorithmin near future.

2. Modified Borel summati on procedure

The di ver gence of 1/ D- expansi on renders
conventional summation nethod ineffective beyond
t he | owest orders.
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Padé sunmation consi derably | Nproves t he
convergence by taking into account poles of the
functi on.

Further inprovenment can be achieved by Padé -
Bor el sunmation that properly accounts for
factorial growh of the expansion coefficients. The
net hod reduces to construction of Padé approxi mant
to the Borel function and subsequent integration of
t he approximant with the decayi ng exponent.

The increase of the coefficients of the 1/D
expansion like a%™®2%! leads to the square-root
singularity in the Borel function at zy=a?l W can
establish the position of this singularity by
eval uation of the classical action along the nost
pr obabl e escape path.

Here, we propose to use the approximants of the
form

+

>| O

(20 = 2"

>|m

f(2) =

where A, B and C are polynomals of degree N
obeying the relation

Af(2) - B - C(z, - 2)Y2 =0O(3N*?).,
The sanme approximants were used by Goodson and
Watson (1993) to sum the energy function for [010)

state of hel i um They were called Darboux
appr oxi mants.
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As an i1 lustration, | et us exam ne
gquasi stationary states of a hydrogen atom in
parallel electric and nmagnetic fields. W use 1/n-
expansi on that is equivalent to "shifted" expansion
in powers of 1/(D+1). W calculate quadratic Padé
approxi mants (used instead of ordinary Padé
approximants in case of quasistationary states),
Padé - Borel approximants, and Darboux - Borel
approxi mants constructed from the sane nunber of
ternms in the expansion (5 terns or 11 terns). The
results are given in the following two tables, for
magnetic fields B=0.5 and B=1, correspondingly. The
results that are nearest to the nunerical solution
found by Anokhin and |vanov (1983) were underli ned.
These best results are exactly Darboux - Borel
approxi mants in nost cases.

Thus, Darboux - Borel approximants take full
advantage from the known singularity structure of
the Borel function, and so the results appear to be
nore accurate than the results by another sunmmation
procedures (quadratic Padé and Padé - Borel).

3. Branch points, avoided crossings, and
degenerate perturbation theory for excited
states

For the excited 1s2s!S state of helium 1/D

series appears to be strongly divergent because of
the presence of a square-root branch point at
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0, = -0.011386007 ( Goodson and Watson 1993). Here, we
explain the origin of this singularity as a result
of crossing with another excited | evel.

To justify our conjecture, we perform analytic
continuation of the vibrational part of the energy,
e =(E-E,)D along the contour enbracing the branch
point. For this purpose, we use quadratic Padé
approximants (see a figure). The quadratic Padé
approxi mant has two branches which are the roots of
quadratic equation. The nmain branch behaves as
£ =-0631-416D'+.. when & =1/D -0 (solid line).
One can see that quadratic PA gives correct value
to the branch point ©&,. Myreover, the second
(suppl enentary) branch of quadratic PA nmay be
conti nued backward from the branch point to the
origin (dashed line), and it gives & =104+0O(D™Y).
It exactly coincides with the vibrational energy
for the state of the oscillator wth quantum
numbers (200): E?® =104046. So, one has to assign
(200) quantum nunbers to the second branch of |010)
energy function (corresponding to 1s2s'S state).

The origin of this phenonenon is a Ferm-Ilike
resonance bet ween nol ecul ar-1i ke vi brati onal
excitations. |If the charge of the nucl eus assunes
non-integer value Z.,=157, then the first two
frequencies of vibrations are related as 1:2. So,
one can expect near-degeneracy of the Ilevels
(np,=0, n,=1) and (,;, =2, n,=0) for the nearest to
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Z. integer charge Z=2 corresponding to helium
Si nce near-degenerate states are highly sensitive
to perturbation caused by anharnonic ternms in a
potential, the 1/ D expansion diverges.

A convenient way to overcone the divergence is
to consider the sum and the product of the
energies. As their expansions have no nore branch
point singularity, they can be weasily summed.
Finally, the energies can be calculated from the
correspondi ng quadratic equation.

Recently, we have studied in detail the pattern
of energy levels, avoided crossings, and branch
points for a hydrogen atom in a nmagnetic field.
Such system has all essential features of a general
non-separable problem The enclosed paper was
submtted to J. Phys. B.
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