Part I11.
Exact expansion around the asymmetric stationary point

Calculation of the coefficients of 1/D-expansion for two-electron atoms was done firgtly in the
paper [L. D. Mlodinow and N. Papanicolaou, Ann. Phys. (N. Y.) 131, 1 (1981)] and later in [D. Z.
Goodson and D. R. Herschbach, Phys. Rev. Lett. 58, 1631 (1987)]. The present approach is similar to
the second paper.

At the zero-order (classical electrostatic) approximation, it is necessary to find a stationary point
of the effective potential. Finding the asymmetric-configuration stationary point was considered in the
first section of this report. The large-dimensiona limit equals to the value of the potential at the

stationary point. For helium, itis D°E0 [T}, E; — 10.616 2117 (here, we use atomic units for

energy that differ by Z* times from units used in the first section. Now, the Coulomb interaction

reads -Z/r,—Z/r, +1/r,, not =1/r, =1/r, +A /r; asinthefirst section).

The first, second etc. orders of the expansion
D°E~E,+ED™"+E,D?+.. Q)

represent quantum corrections. The first coefficient is the energy of harmonic vibrations plus some

additional term equal to 6E, for our problem:
E, =(n, +3)w, +(n, +3)w, +(n; +3) w, +6E, (2
For helium, the frequencies are:

w, = 47167 +22.993i
w, = 58670 -16.752i . 3)
W, =9.053+17.137]

Note that the frequencies are Z*> times more than in previous sections, because now we use different
units. Note also that we interchange the first two frequencies to make our harmonic quantum numbers

n, n,,and n, equal to n, k, and | from the paper K. Richter et al. correspondingly. It can be seen

from the table “ Transformation to norma modes using prolate spherical coordinates’ that the third



dowest mode corresponds to oscillation of r,, the first mode is associated with oscillation of the
coordinate (r,—r,)/r,, and the second mode is associated with oscillation of the coordinate
(r, +1,)/r; (taking into account that the first two mode are interchanged now). So, quantum numbers
(n,,n,,n;) equal to quantum numbers (n,,n,,l) derived from the adiabatic approximation that are in

turn in one-to-one correspondence with the semiclassicaly derived set (n,k,1), see the paper of K.

Richter et al.

Higher coefficients of 1/D-expansion, E,, E, etc. represent anharmonic corrections. They were

calculated by recurrence relations that follows from the expansion of the wavefunction over D™ and
over the set of harmonic-oscillator eigenfunctions. These recurrence relations contain only elementary
arithmetic operations (sum, subtract, multiply, and divide), so we use the same program as for
symmetric real minimum allowing complex-type variables. Results (including one anharmonic term)

for severa states of helium are:

E(0,0,0) = (-10.616-2117)D ™ +(-6.253 ~1013i)D® +(-64.460 +15795)D™ ...

E(L0,0) = (-10.616- 2117)D? +(40.914 +219801)D "~ +(-329.778 -176.734)D ™ +..

E(2,0,0) = (-10.616-21171)D ™ +(88.08L +44.973)) D +(-957.418 ~701922)D™* +..

E(3,0,0) = (-10.616- 2117i)D 2 +(135.249 + 67.9651) D +(~1947.379 ~1559.768)D * +..

E(4,0,0) = (-10.616- 2117i)D 2 +(182.416 +90.9581) D +(-3299.662 —2750272)D ™ +.. 4
E(5,0,0) = (-10.616-2.117i)D 2 +(229.583 +113.951i) D +( 5014.267 —4273435)D ™ +..

E(6,0,0) = (-10.616- 2117i)D 2 +(276.750 +136.9431) D + (~7091193 —6129.256) D +..

E(10,0,0) = (-10.616-2.117i) D +(465.420 +228.914i)D® +(-19022.116 -16879.124)D ™ ...
E(3,01) = (-10.616-2117)D 2 +(144.301 +85102i)D " +( 2052318 —2363.040)D ™ ..

E(6,,0) = (-10.616-2.117))D 2 +(335.420 +120.191i)D® +(-11053.041 -5148327)D™* +...

Nineteen coefficients for (6,0,0) state are:

(-10.61633515089777, -2.11689701804518)

(276. 7504091082661, 136. 9432964397447)
(-7091. 193389589787, - 6129. 255903391875)
(269801. 5025965456, 256138. 6161855411)
(-1.353066840540659E+007, - 1. 088303340599514E+007)
(6.848903587307632E+008, 4. 742266328011606E+008)
(-3.127163526877386E+010, - 2. 010975915019004E+010)
(1.187173493292221E+012, 7. 104015657159127E+011)
(-2.795559457263984E+013, - 6. 483424665728123E+012)
(-4.583529513030274E+014, - 2. 265024336321758E+015)
(7.430140341903816E+016, 2. 895796762447328E+017)
(2.661451087683579E+017, - 2. 157465392593928E+019)



. 239289524988538E+020, 9. 146228439908465E+020)
. 655491183915015E+022, 1. 787257718989365E+022)
.111311501343495E+024, - 9. 891146614483248E+024)
. 576986682904429E+026, 6. 533964036247258E+026)
. 780695906233375E+028, - 3. 882925836040120E+028)
.210026262811870E+031, - 5. 269155907072095E+030)
. 856240072011069E+032, 1. 299751003660980E+033)

FORTRAN notation for complex numbers was used, i. e. we list here (ReE,,ImE,;), (ReE,,ImE)),
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, (ReE,,ImE,).

Results of summation of this seriesfor D =3 are:

n Padé Quadratic Padé - Borel (1+i) Padé - Borel (1-i)
0 -1.17959 -.23521 .00000 .00000 -1.17959 -.23521 -1.17959 -.23521
1 -.11471 .00471 . 00000 .00000 -.25044 -.00989 -.25044 -.00989
2 -.17519 -.00127 1.70917 .82741 . 36132 . 17957 . 36132 . 17957
3 -.11560 .00428 .14353 -.27650 -.02441 -.08265 -.02441 -.08265
4 . 14885 -.04059 .29106 -.01993 . 41017 -.19830 . 41017 -.19830
5 -.08098 .00324 1.27667 -.03165 .10741 -.09627 .10741 -.09627
6 .05999  .01929 . 04388 . 04911 . 80780 -.04601 . 70346  .00877
7 -.06349 .00790 . 04571 -.01590 .03090 .02574 .03090 .02574
8 -.00279 .00785 -.24790 .36693 -.35788 .01508 -.35788 .01508
9 -.06499 .00869 .03792 .00610 -.05798 .02518 -.05798 .02518
10 .05574 .00919 -.45424 .25059 -1.71660 -.50368 -1.54220 -.73227
11  -.08233 -.02172 . 23786 -.24464 .09229 -.11781 .09229 -.11781
12 . 04225 . 01673 . 06229 . 00297 .10831 -.25917 -.04912 -.25317
13 -.11309 -.03553 . 05836 .00564 . 09887 -.11797 . 09887 -.11797
14 . 04560 .01080 -.34091 .03877 -.64208 .08151 -.63179 .08156
15 -.03731 .01754 .03345 .02993 -.05732 -.02565 -.05735 -.02552
16 . 04700 -.00181 .05255 .02173 -.10813 .04604 -.10815 .04623
17 -.04619 .00143 -.07128 -.00213 -.05577 -.03166 -.05584 -.03155
18 .02352 -.00473 -.24854 -.65382 . 66138  .14891 . 65928 . 15212

There is no convergence for Padé, quadratic, and Padé - Borel approximants. Instead of summing the
sries E~ED?+ED®+ED™+.. we try to sum the shifted series
E~E,(D+a)?+E,(D+a)® +E,(D +a)™ +... We obtained good results using a shift parameter

a=2n, —1. Theresultsfor this shift parameter for the state (6,0,0) are given below.

n Padé Quadratic Padé - Borel (1+i) Padé - Borel (1-i)
0 -.05416 -.01080 . 00000 .00000 -.05416 -.01080 -.05416 -.01080
1 -.03649 .00609 .00000 .00000 -.03936 .00195 -.03936 .00195
2 -.05064 .00036 -.04759 .00584 -.04945 .00270 -.04945 .00270
3 -.04653 .00322 -.04887 .00219 -.04883 .00155 -.04883 .00155
4 -.04709 -.00139 -.06011 -.00067 -.04922 .00275 -.04922 .00275
5 -.04575 .00190 -.04623 .00185 -.04604 .00126 -.04604 .00126
6 -.04535 .00242 -.04542 .00284 -.04558 .00203 -.04558 .00203
7 -.04577 .00193 -.04678 .00267 -.04608 .00172 -.04608 .00172
8 -.04730 .00225 -.04644 .00220 -.04702 .00314 -.04702 .00314
9 -.04582 .00208 -.05566 -.00045 -.04615 .00203 -.04615 .00203

10 -.04525 .00175 -.05150 -.00054 -.04523 .00197 -.04523 .00197

11 -.04588 .00207 -.04539 .00116 -.04544 .00228 -.04544 .00228

12 -.04659 .00175 -.04617 .00270 -.04521 .00200 -.04521 .00200

13 -. 04593 . 00207 -. 05036 -.00039 -. 04611 . 00159 -. 04608 . 00169



14  -.04607 . 00106 -. 07968 . 02934  -.04634 . 00156 -. 04627 . 00168
15 -. 04566 . 00179 -. 04519 -.00437 -. 04614 . 00158 -. 04611 . 00169
16 -. 04552 . 00121 -. 04576 . 00119 -. 04551 . 00180  -.04551 . 00186
17 -. 04552 . 00137 -. 04557 . 00132 -. 04587 . 00162 -. 04587 . 00169
18 -. 04552 . 00121 -. 04531 -.00102 -. 04559 . 00201 -. 04557 . 00206

E('S) -0.04553867 -0.000000202
ECS’) -0.04553924 -0. 000000376

Exact results of quantum-mechanical calculation of K. Richter et al. are given in the last two lines.
Another choice of the shift parameter is a=—E, /(2E,) that leads to El =0. So, the scaled

energy (D+a)’E is weskly dependent on 1/(D+a), and one can expect better convergence for

shifted expansion. The results for the same (6, 0, 0) state are presented below. We used Padé

approximants for summation of the residual series E,(D+a)™ +E,(D +a) ® +...

n 1/ (D+shiftl )-expansion Padé

1 .0000000000D+00 . 1421085472D- 13 . 03566 .00864
2 -.2134551522D+04 -.1762780192D+04 . 06695 .01430
3 .1088606014D+06  .2274684926D+05 .04519 . 00551
4 -.3786108611D+07 .1019305837D+06 . 04562 . 00032
5 .1000715005D+09 -.2627439345D+08 . 04597 . 00333
6 -.1383047867D+10 .1725561035D+10 . 04575 . 00225
7 -.8641428698D+11 -.1198432016D+12 . 04587 . 00310
8 .1149076479D+14  .9448847097D+13 . 04706 .00354
9 -.5690108930D+15 -.5082752435D+15 .04591 .00314
10 .3335001899D+16  .1185620971D+17 . 04596 .00214
11  .2143167113D+19 .8546576774D+18 . 04610 .00389
12 -.1031780280D+21 -.1213001292D+21 . 04684 . 00252
13 . 1301650231D+23 .1453111613D+23 .04599 . 00371
14 . 3180020953D+25 -.2205111743D+25 . 04652 . 00163
15 .9238140587D+26 -.4745935059D+27 . 04530 .00238
16 -.2546975439D+28 -.7543380105D+29 . 04596 .00154
17 -.7336168874D+31 -.1446875089D+32 . 04551 . 00136
18 -.2563949317D+34 -.1565117444D+34 . 04599 . 00155

Note the considerable improvement of the convergence in lower orders. Here, the shift parameter is
a=1377+3.70i thatiscloseto a=11 under the previous choice.

More extensive Table 2 compares the unshifted results with the results of these choices of the
shift parameter (a=2n, -1 and a=-E, /(2E,)) for various (n,,0,0) states of helium. We tried
another shift parameters for (6, 0, 0) state of helium, see Table 1. Generaly, the convergence is
weakly dependent on the shift parameter unlessit is sufficiently smal, |aj<10. Convergence of Padé
approximants for unshifted and shifted expansions for the states (3,0,1) and (6,1,0) of helium together

with states of the positive ion of lithium is shown in Table 4.

Another summation methods were tried also. For instance, we summed the series for ReE and



(IME)? separately, to eiminate possible square-root singularity at the point where the functions E

and E* meet. We tried to sum the series for the function (E)Y? and then to square the result to

obtain the energy itself. We tried to choose the shift parameter by more sophisticated method, so that
approximants of neighbor orders were equa (by solving a non-linear equation). None of these
methods gives remarkable improvement of the convergence.

Real part of the scaled energy D*E as a function of & =1/ D is shown on Figure 1. For each
state, we draw three curves obtained by summation of 13, 14, and 15 terms of the series with the shift
parameter a=2n, -1 using Pade approximants. In most cases (except (1,0,0) and (2,0,0) states) 4l
three curves coincide within the accuracy of the plot. The enlarged part of this graph near D=3 is
shown on Figure 2. Note that our results aways lye dightly up to the results of exact quantum
calculations (shown by circles on the figure). The corresponding graphs for the imaginary part are
shown on Figure 3. For states (0,0,0) and (1,0,0) it is relatively large even at D =3, and so these
states cannot be considered as quasistationary. For most of the states, the curves intersect the
horizontal axis, and we obtain a meaningless result: ~-D*IME <0. In fact, IME becomes very small
with increasing of 1/ D, but it is gill negative. This fault may be a result of insufficient convergence
of Padé approximants.

The similar curves for the energy of Li* ion are shown on Figures 6 and 7. Curves for the real
part are qualitatively smilar to helium. The imaginary part remains appreciableat D =3 for (0, 0, 0),
(1, 0, 0), and (2, 0, 0) states that appear to be not long-living quasistationary states. In contrast, the
helium (2, 0, 0) state islong-living that reflects increasing of stability of such states with decreasing of
the nuclear charge (or relative increasing of the repulsion between electrons).

A pattern of poles of Padé approximants for 1/ (D +11) expansion of the energy for (6, O, 0)

state is shown on Figure 8. Accumulation of poles near the origin reflects an essentia singularity at
the origin that leads to factoria divergence of the series. A pattern of PA poles for the Borel
transform of that series is shown on Figure 9. The poles lying on a positive haf-plane may affect the
Borel integral and may hinder the convergence of Padé - Borel sums. The same pattern for the

“ground” (0, 0, 0) state is shown on Figure 10.

Details of computations



Calculation of coefficientsof 1/ (D +a)-expansion was done using old program with changing

the type of all variables to complex*32 (this program was used in 1983 - 1988 for calculation of
ordinary expansion around the real minimum for three-body systems). A text of the full program is
printed in Table 3. Calculation of 15 coefficients on SP2 computer takes 4 - 8 hours for n, =0 - 15.

Calculation of 19 coefficients for (6,0,0) state needs 26 hours. Changing complex* 32 to complex* 16
dightly speeds up calculations (about 30%). Results of calculations are stored in files he.dat and li.dat

for hdium and Li" correspondingly. Working directory on personal computer is:
c:\sergeaviou\fortran\helium\summat. When this computer is on, it is possible to use ftp alexei with
user: dunn and password: 455386 to transfer the files. These files are organized as severa two-line
entries. Each entry corresponds to one state. The first linein each entry isfiveintegers: n, n,,n;, N,
a which may follow by a comment. n;, n,,n, are quantum numbers, N is the number of expansion
coefficients (including zero-order term), and a is the shift parameter. The second line is a list of
shifted-expansion coefficients in the form: (ReEO,Im EO) (ReEl,Im El) (ReEN_l,ImEN_l).

We used severd tests to evaluate the accuracy of obtained results. Table 5 compares the
accuracy of the equilibrium distances and frequencies with the exact results of independent
calculations by Mathematica. The accuracy appears to be 31 - 32 digits that approaches the limit
about 33 digits for complex*32 arithmetic. Note that these quantities were obtained by numerica
iterations since there are no exact analytic formulas for them. The succeeding calculations of
coefficients are “exact” in a sense that they are obtained by recurrence relations that contain only four
arithmetic operations. Table 6 shows the accuracy of the coefficients calculated by the same program
but for the symmetric minimum by comparison with the results of D. Goodson that appear to be
dightly more accurate. The accuracy decreases by 1 - 2 digits with increasing of the order by one. The

accuracy of the twelfth coefficient E,, is 14 digits. Table 7 shows the evaluated accuracy for
coefficients for (6,0,0) state of helium. In the first line of each entry, we give the coefficient of the
shifted expansion that was calculated directly. In the second line, we give the coefficient of the shifted
expansion, that was obtained by re-expansion in powers of 1/ (D +a) of the unshifted expansion. The
accuracy of the last fifteenth coefficient is till sufficiently large, 15 digitsin the rea part and 14 digits

in the imaginary part.



Large-n, limit of the dimensional perturbation theory

(Latest note: Similar approach was used for the cubic anharmonic oscillator by G. Alvarez [J.
Phys. A: Math. Gen. 22 (1989) 617].)

Existence of long-living asymmetric-configuration states is restricted to relatively large quantum
numbers n, that was proved by K. Richter et a. within the adiabatic approximation. It is a reason why

the behavior at large n, may be of interest. Figure 5 shows the behavior of the scaled energy D’E
(real part) as a function of avariable n, / D . Rapid convergence to some large- n, curve is evident, so
the energy for sufficiently large n, is actually dependent only on one variable ' =n, / D, not on both
n, and D. To prove it, let us consider terms in the large-dimensional expansion (1) separately. The

zero-order termin (1) E, isaconstant (independent on n, and D). Taking into account Eq. (2), the
first order termis E, =00,8' + (3 &y +(n, +) w, +(n; +3) g +6E,)n;* that tends to w,d" for large
n,. Taking into account that E, represents the second order polynomiad on n, of the form
AnZ +Bn, +C (that can be proved by direct computation of this coefficient by recurrence relations),

the second order term can be rewritten as E,0% = Ad'? +Bd'°n,' +C&?n”. It tendsto Ad'? for

large n,. By the similar way it can be proved that higher order coefficients also depend only on &' for
large n,. So, the scaled energy D?E for large n, tends to some universal function of &' having the
expansion E; +E/d' + E;d' *+... where E} = E,, E/ =w,, and generdly, E, isthe coefficient of the
highest order term in a polynomial in n, that represents E, as a function of n, e g.
E.(n)=E/nf +En"+...

Thefirst fifteen coefficients E; for helium are:

(-10.616335150897767811048806451165390, - 2. 1168970180451802608692347976633732)
(47.167275800327548591182958776531, 22. 992653433661030887319266650926)
(-181.16083930709028054148349192092, - 166. 32918653020802428122746979220)
(910. 47835748222447613002314893, 1084. 608492268366961143569468325)
(-6439. 539552876040031030774630, - 6861. 4263564574395384231722209)
(51417. 358465983145089021249, 41936. 570169344947308605728)

(-401412. 1572063741976799081, - 237732. 56700876574043160946)
(2917088. 8283426015910588, 1111518. 3447382370811938)
(-18977650. 3874052748593, - 2266651. 03219716373225)
(101653914. 281786512013245, - 34778874. 9341461271)
(-339365637. 62660229, 644954506. 68744756)
(-839913420. 06180, - 7201745316. 291075)
(26200059441. 26, 66097521553. 27)
(-274286308525. 0, - 549837050924. 0)
(2348865212000. 0, 4256504929000. 0)



(thelast 1 - 3 significant digits of these numbers may be incorrect because of round-off errors).

A “root test” of the convergence of this series gives convergent numbers:

-k

k B

1 . 01906
2 . 06377
3 . 08905
4 . 10153
5 . 10855
6 . 11355
7 . 11809
8 . 12298
9 . 12813
10 . 12994
11 . 12694
12 . 12465
13 . 12393
14 . 12411

So, the quasiclassical large-n, series has a finite radius of convergence =0124 and it has no
singularity at the origin unlike an exact finite-n, series. It considerably smplifies summation of the
series and allows one to sum it even at infinitely large parameter &' (see the results of summation
below).

Figure 4 shows the poles of Padé approximants on the complex plane for the square root of
quasiclassical series. The poles does not concentrate near the origin which confirms that the series has
a finite radius of convergence. There is a clear accumulation of poles near the point —0.125 —0.040i
that may reflect existence of asingularity here.

Let usconsider a“quasiclassical” energy

E'= [im nwE (5)

n -
nll D=const

We proved above that it depends only on onevariable ' =n, / D and has an expansion
E'®)=Ed*+Ed>+E,3"+... (6)

(Latest note: Known asthe , classical Birkhoff series*, see[Alvarez].)



For large n,, the energy may be approximated by Rydberg-like formula having this universal function

in the nominator:
E=E'(3')/n? )

The following table gives the results obtained by the formula (7) in comparison with the exact results

for three-dimensional casefor (n,,0,0) states,

n | ReE,formula(7) ReE, exact

5 20.194 -0.257 (*S°)
-0.250 (°S°)

3 20114 0141 (*S°)
-0.140 (°S°)

4 20,075 -0.090 (*S°)
-0.089 (°S°)

5 -0.053 -0.062

6 -0.039 -0.046

7 -0.030 -0.035

8 -0.024 -0.028

9 -0.020 -0.022

10 -0.016 -0.018

11 -0.014 -0.015

12 -0.012 -0.013

13 -0.010 -0.011

14 -0.009 -0.010

where the series (6) was summed using Padé approximants. The correction to (7) of the form
E"(®')/n’ may improve the accuracy, but it is beyond our study.
According to the quasiclassical result of K. Richter et a., for large n, and D =3 the quantity

n~—E tendsto S* =149150, the action of the periodic orbit. Within our approach, this quantity

equals to the sum of the series S(8')= 6'\/—E(')— E;8-E,3%.. a & =n/D - «. Results of

summation at &'=c0 are given in the following table. For instance, Padé approximant [1/1] is
\/_E(')al .o . 3/2 NPT

=" Ittendsto afinitelimit 2(-E,)"" /w, at infinity.

1_ El 6:
2E;
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Padé approximant | ()
[1/1] - 134-021i
[2/2] . 1.50-0.09i
[3/3] . 1.47-0.061i
[4/4] . 1.47-0.06i
[5/5] . 150-0.02i
[6/6] . 1.43+0.04i
[7/7] 145+ 0.02i

Padé approximants seem to converge to 147+0.04+(0.01+0.03)i in agreement with the
semiclassical result of K. Richter et al. (1.491...).



