
Part II.

Two-Coulomb-center approximation (the first electron is regarded infinitely heavy)

Before considering the complete two-electron problem, let us consider the adiabatic

approximation, when the problem is solved for definite values of R1 , and then the energy is

approximated by the minimum of the curve E R( )1 . So, the first electron is treated classically. Such

approximation was proven to have a good accuracy for asymmetrically doubly excited states under

consideration. We shall be interested especially in evolution of these states with increasing of

dimensionality and their large-dimensional limit.

Since the problem of two Coulomb centers is separable in prolate spherical coordinates, the

states are characterized by two quantum numbers n1 , n2  in equations depending on ξ , η . The

problem in D  dimensions is equivalent to three-dimensional problem with non-zero magnetic

quantum number m D= −( ) /3 2 . It was found in [K. Richter, J. S. Briggs, D. Wintgen, and E. A.

Solov’ev, J. Phys. B: At. Mol. Opt. Phys. 25 (1992) 3929] that the two-center energy curves have a

local minimum when n1 0=  and n2 5≥ . We reproduce these curves using 1/D-expansion (equivalent

to 1/m-expansion). Our results are shown on Fig. 3
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Fig. 3. Energy curves for an electron in a field of two Coulomb centers with charges Z1 2=  and
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Z2 1= − . R1  is the distance between centers. Full energy is the sum of the quantum-mechanical

electronic energy and the classical interaction energy Z Z R1 2 1/ . Here, D = 3 and m = 0 . The

electronic energy was found by an expansion over 1 / N , where N m n n= + + +1 2 1.

Minima on the curves are evident and can be easily found numerically. The position of the scaled

minimum, r N R1
2

1= − , as a function of N −1  is shown on Fig. 4.
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Fig. 4. A coordinate of the minimum on the energy curve E R( )1  as a function of dimensionality (or a

magnetic quantum number). When N − <1 0 134.  (or m > 0 5. ), the minimum turns into a complex

stationary point. Here, n1 0=  and n2 6= .

We were able to trace the stationary point up to a large-dimensional limit N → ∞  when it tends

to 2 0 029 0( . .472 )− i . We also performed an analytic continuation of stationary points in a helium

potential (listed in the table in the first section of this text) from m1 1=  to m1 → ∞ . Results are given

in a following table.
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No r1 r2 r3 V0

1 −1398. 1345. −0 529. −0.468

2 − +0 018 0136. . i 0 085 0 060. .+ i − −0 070 0 057. . i − +5 588 8149. . i

3 − −0 018 0 136. . i 0 085 0 060. .− i − +0 070 0 057. . i − −5 588 8149. . i

4* − +0 220 0 106. . i 0 030 0 196. .+ i 0 122 0 119. .+ i 2 510 2 351. .+ i

5* − −0 220 0 106. . i 0 030 0 196. .− i 0 122 0 119. .− i 2 510 2 351. .− i

6 0 029 0. .472+ i 0 234 0 052. .+ i 0 011 0 363. .+ i − +2 082 0 818. . i

7 0 029 0. .472− i 0 234 0 052. .− i 0 011 0 363. .− i − −2 082 0 818. . i

* Note. The forth and the fifth stationary points were evolved from the corresponding configurations given in the

table for m1 1=  (see the first section) with interchange of r1  and r2 . Another stationary points were evolved

without interchange (configurations with interchange have no definite limit at m1 0→ ).

It can be seen from Fig. 5 by checking the value of r1 , that the system condenses to the seventh

configuration in the large-dimensional limit (our present scaling differs by a factor 2). This numerical

experiment confirms our choice of the stationary point that was done in the first section.

The dependence of the energy on dimensionality is shown on Fig. 6.
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Fig. 6. A minimum on the energy curve E R( )1  as a function of dimensionality. When n2 2=  (the left

figure), the real minimum does not exist even for three-dimensional problem. Nevertheless, the
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complex stationary point gives a good approximation to the energy.

Discussion

The three-dimensional problem was generalized to arbitrary dimensionality. The adiabatic

solution was analytically continued to the large-dimensional limit. It was found that the large-

dimensional limit is associated with the seventh complex stationary point of the effective potential.

Within the adiabatic approximation, the energy was found as a function of dimensionality. We believe

that the dependence of the exact energy on dimensionality is approximately the same. It was found

that the width decreases linearly in the wide range of the parameter N −1 , see Fig. 6. So, it is expected

that only two terms of the expansion over 1/N  are sufficient to reproduce the width with a reasonable

accuracy. Since the shape of the curves for a real part of the energy is almost parabolic, it is expected

that only three terms of the expansion over 1/N  may be sufficient to obtain a real part. However, the

behavior of the energy is non-analytic when dimensionality is close to three (an imaginary part

disappears, and a real part has a discontinuity in the second derivative). It means that the convergence

of the 1/N-expansion may be slower in this case, and more coefficients of the expansion are needed.

Below, we present for reference a table of the stationary points for different λ  and for m1 = ∞

(non-helium two-electron atoms).
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λ r1 r2 r3 V0

0.050 -0.07946 - 0.27265*I 0.15509 - 0.11373*I -0.03285 - 0.08908*I -1.69498 - 2.98071*I
0.100 -0.06894 - 0.29848*I 0.16972 - 0.10833*I -0.03745 - 0.12494*I -1.83599 - 2.55919*I
0.150 -0.05805 - 0.32146*I 0.18191 - 0.10232*I -0.03789 - 0.15612*I -1.92615 - 2.22704*I
0.200 -0.04669 - 0.34307*I 0.19251 - 0.09580*I -0.03574 - 0.18550*I -1.98713 - 1.94710*I
0.250 -0.03486 - 0.36396*I 0.20186 - 0.08889*I -0.03158 - 0.21415*I -2.02857 - 1.70359*I
0.300 -0.02261 - 0.38458*I 0.21012 - 0.08167*I -0.02573 - 0.24265*I -2.05593 - 1.48789*I
0.35 -0.01001 - 0.40529*I 0.21740 - 0.07426*I -0.01842 - 0.27141*I -2.07276 - 1.29462*I
0.40 0.00288 - 0.42649*I 0.22376 - 0.06673*I -0.00979 - 0.30082*I -2.08153 - 1.12012*I
0.45 0.0160 - 0.4486*I 0.22928 - 0.05919*I - 0.33132*I -2.08411 - 0.96181*I
0.50 0.0293 - 0.4723*I 0.23401 - 0.05173*I 0.01089 - 0.36345*I -2.08195 - 0.81775*I
0.55 0.0427 - 0.4982*I 0.23798 - 0.04442*I 0.02274 - 0.39794*I -2.07623 - 0.68650*I
0.60 0.0561 - 0.5274*I 0.24127 - 0.03735*I 0.03548 - 0.43580*I -2.06794 - 0.56696*I
0.65 0.0696 - 0.5613*I 0.24393 - 0.03060*I 0.0490 - 0.4785*I -2.05793 - 0.45831*I
0.70 0.0831 - 0.6024*I 0.24601 - 0.02425*I 0.0634 - 0.5284*I -2.04698 - 0.36000*I
0.75 0.0967 - 0.6544*I 0.24757 - 0.01838*I 0.0784 - 0.5894*I -2.03579 - 0.27169*I
0.80 0.1102 - 0.7243*I 0.24868 - 0.01306*I 0.0942 - 0.6685*I -2.02502 - 0.19333*I
0.85 0.1238 - 0.8267*I 0.24940 - 0.00840*I 0.1108 - 0.7804*I -2.01534 - 0.12519*I
0.90 0.1376 - 0.9993*I 0.24981 - 0.00451*I 0.1282 - 0.9632*I -2.00743 - 0.06814*I
0.95 0.1538 - 1.3628*I 0.24996 - 0.00162*I 0.1486 - 1.3381*I -2.00202 - 0.02415*I

Note that all distances have positive real parts when λ > 0.45 .


