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We study destabilization of an atom in its ground state
with decrease of its nuclear charge. By analytic continuation
from bound to resonance states, we obtain complex energies of
unstable atomic anions with nuclear charge which is less than
the minimum ”critical” charge necessary to bind N electrons.
We use an extrapolating scheme with a simple model poten-
tial for the electron which is loosely bound outside the atomic
core. Results for O77 and S™~ are in good agreement with
earlier estimates. Alternatively, we use the Hylleraas-basis
variational technique with three complex nonlinear parame-
ters to find accurately the energy of two-electron atoms as the
nuclear charge decreases. Results are used to check the less
accurate one-electron model.
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I. INTRODUCTION

There has long been an interest in the existence of
long lived doubly charged negative atomic ions [1-4].
The possibility of doubly charged negative ion resonances
has been raised in the case of oxygen by experiments of
Peart et al. [5] who observed resonance like structures
in electron-impact detachment cross section at energies
of 19.5 and 26.5 eV. A Hartree Fock calculation of the
closed-shell electronic configuration shows that the reso-
nance energy of O™~ is about 8 eV above O™, which later
was confirmed and modified by configuration interaction
and other methods [2]. Sommerfeld et al. [6] performed
a large scale multireference configuration interaction cal-
culation using the complex rotation technique to investi-
gate resonance states of H~~. Their results predict the
existence of a (2p3)*S resonance state of H™~ with a
resonance position of about 1.4 eV above the (2p?)*P
state of H™ and a lifetime of 3.8 - 1071 sec [7], which
was confirmed later by complex coordinate rotation cal-
culations of Bylicky and Nicolaides [8]. Recently, the
multireference configuration interaction calculations us-
ing the complex absorbing potential were performed for
O~, S, B~ 7, and A"~ [9]. No experimental evi-
dence of existence of atomic di-anions was found, prob-
ably due to insensitivity of scattering processes to di-
anionic resonances. But in principle, these resonances
could be observed in some scattering experiments [9].

In this paper, we consider an N-electron atom in its
ground electronic configuration state with the nuclear

charge Z as a variable. Integer values of Z with Z > N
correspond to positive ions, with Z < N to negative ions
and with Z = N to neutral atoms, where N is the number
of electrons. A complex energy of a doubly charged nega-
tive ion (Z = N —2) is found by extrapolating the ioniza-
tion energy into the instability region of nuclear charges
less than some critical nuclear charge Z.. We use the
reliable data for the ionization energy of a neutral atom
(Z = N) and its isoelectronic negative ion (Z = N — 1)
which were calculated or experimentally measured.

The simplest extrapolations by polynomial fits [10,11]
or by analytic formulas with a few fitting parameters
[12,13] give the real negative binding energy for closed-
shell anions such as O™~ or S™~. Extrapolating for-
mula of Herrick and Stillinger [10] includes a singular 3/2
power term and gives both positions and widths of the di-
anions. Although it correctly models a similar singularity
of the energy calculated by a variational method, it fails
for the exact energy, which has a less trivial singularity
[14].

In our approach, we use one-electron model to approx-
imate movement of a weakly bound electron that is going
to escape when the charge approaches the critical charge.
Free parameters of the model are fit in order to repro-
duce correctly the binding energies of a neutral atom and
its isoelectronic anion. Since the existence of one loosely
bound electron is a realistic approximation in the vicinity
of the critical charge, we believe that the model realis-
tically reproduces the non-trivial singularity at 7 = Z,
[15]. Earlier, this model was used to determine the crit-
ical charges by finding zeroes of the binding energy [16].
It was found that the critical charges never drop below
N —3/2. The maximal surcharge defined as S, = N — Z_
was found for Rn isoelectronic series and is equal to 1.48.
Here, we extrapolate the ionization energy deeper into
the instability region, to Z = N — 2, corresponding to a
di-anion.

Although various model interaction potentials for a
scattering state of Z 4 2 electrons can realistically de-
scribe a process of electron impact detachment from a
negative ion (see [17] and references therein), applica-
bility of model potentials for a resonant state of Z + 2
electrons remains to be studied. There is a common be-
lief that due to a strong correlation effect among several
equivalent electrons the underlying physics is much more
complicated than a simple model could suggest, and full
scale calculations with multielectron trial wavefunctions
are unavoidable. For H™ 7, there were studies of potential
curves in the framework of hyperspherical coordinates
[18] and studies of the interaction between the Nth elec-



tron and the (N — 1)-electron target including exchange
interaction [19].

In this work, we attempt for the first time to model
an unstable multi-electron di-anion by a suitable one-
electron potential. The underlying assumption and the
mapping of an atomic system with a weakly bound elec-
tron to a one-particle system with a screened Coulomb
potential is discussed in the next section. In Sec. III, we
find an approximate dependence of the energy on the nu-
clear charge by extrapolation from the known energies of
a neutral atom and the corresponding negative ion. En-
ergies and widths of doubly negative ions for isoelectronic
series exhibiting a bound singly charged anion are eval-
uated systematically for N < 18. Accuracy of the model
is estimated by comparison of the model results with ex-
act numerical results at Z < Z. for helium isoelectronic
series. Sec. IV is a summary and conclusion.

II. DESCRIPTION OF THE ONE-ELECTRON
MODEL

A variational study of the helium isoelectronic
series using the Chandrasekhar trial wavefunction
— e~®@r2—271 [20] shows that aj/as < 2 if
Z > 2, where as is the smallest among the two variational
parameters a; and as, in a reasonable agreement that
both electrons occupy equivalent orbitals in helium and
two-electron positive ions. The ratio of the exponents
increases as the nuclear charge decreases and reaches 3.7
for a negative hydrogen ion (Z = 1). It means that the
orbital of one of electrons inflates in comparison with the
orbital of another electron.

A similar variational study of the berillium isoelec-
tronic series using the function e~ %171—0¢2r27aG373—a4Te
properly symmetrized over coordinates and spin func-
tions shows that as = a4 for berillium and four-electron
positive ions, but as/ay = 2.4 for the negative ion of
lithium where a3 and a4 are the smallest exponents cor-
responding to outer electrons, and ag > a4 (asz # a4 if
Z < 3.25). Variational study of the neon isoelectronic
series by Herrick and Stillinger [10] shows a similar diffu-
sivity of the outer orbital for F~ (Z = 9) and for charges
slightly less than 9 (0.111 < Z—1 < 0.118).

We expect that for N-electron atom in general, the
outer electronic shell undergoes a profound change when
the charge decreases and reaches values around N — 1,
so that for a negative ion one of the electrons is held
much farther from the nucleus than the others. We admit
that some exceptions from this rule are possible. Con-
sider, for example, the H™~ resonance studied in [7,8].
It has (2p®)%S electronic configuration corresponding to
the excited state of the isoelectronic Li. In this system,
three electrons occupy three different p-orbitals. Since
these orbitals are spatially separated along three differ-
ent axes, three electrons are relatively weakly interacting
between themselves. In fact, no electron is pushed out
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to a loosely bound orbital, so all electrons are equiva-
lent. But at least for atoms in the ground state with an
even number of electrons, the last two electrons occupy
the same spatial orbital, and we expect that they become
unequivalent when the electron repulsion becomes suffi-
ciently strong in comparison with the attraction to the
nucleus.

For a given atom with IV electrons and a nuclear charge
Z, let us consider a spherically-symmetric potential (also
known as Hellmann potential [21]) of the form

V(r)= 1 +2 (1—em) (1)
roor
with vy = (N - 1)/Z.

To extrapolate the ionization energy, we suggest here
a one-particle model of the outer electron responsible for
ionization process moving in an effective potential of the
atomic core comprising of the nucleus and N —1 electrons.
In scaled coordinates » — Zr, this potential is approx-
imated by our model potential, Eq. (1). Our approx-
imation is asymptotically correct both at small and at
large distances from the nucleus where the scaled atomic
core potential tends to —1/r and to —(Z — N +1)/(Zr)
respectively. The transition between the two different
asymptotic regimes occurs at distances roughly equal to
1/6 that is about the atomic core radius.

The second parameter of the model potential, Eq. (1),
d, is chosen so that the ionization energy in the potential
(1) is equal to the scaled ionization energy Z 2E1(Z) of
the atom. For atoms with more than two electrons, we
consider here an excited state in the potential (1) with
the same spherical quantum numbers (n,l) as quantum
numbers of the loosely bound electron on an external
atomic shell (in this aspect our approach differs from
the method of pseudo-potentials [22] that deals with the
ground state in a potential with an additional repulsive
term necessary to satisfy orthogonality conditions). In
this way, we map an arbitrary atom, which is character-
ized by a pair of numbers (V, Z) to the model one-particle
system (1), which is characterized by a pair of parame-
ters (y,9). Results of fitting the parameter § for elements
with N < 10 in our previous study [16] give evidence that
d depends on 1/Z almost linearly.

In summary, our model (1) effectively eliminates the
singularity in the energy function Ey(Z) to be extrapo-
lated by replacing it with a weakly varying function §(2)
that can be accurately extrapolated by a linear depen-
dence on 1/Z without taking into account a complex sin-
gularity at Z = Z.. In our previous study [16], we fitted
the parameter § to meet the known binding energy of the
neutral atom and its isoelectronic negative ion and then
found § as a function of 1/Z by a linear extrapolation.
After that, we solved Schrédinger equation with the po-
tential (1) and found some kind of extrapolation of the
ionization energy of an atom to the range of Z < N — 1.
Finally, by locating a zero of the ionization energy, we
found critical charges for most of atoms with N < 86. In



the present paper, we use the same technique to find res-
onances of doubly charged negative ions by calculating
the ionization energy at Z = N — 2.

III. RESULTS

For two-electron isoelectronic series, the parameter ¢ is
1.066 and 0.881 for He and H™ respectively. Decreasing
of § for H™ means increasing of the core radius that is
induced by stronger repulsion between electrons. Results
of extrapolating the ionization energy to the range Z < 1
with ¢ assumed as a linear function of 1/Z are shown in
Fig. 1.

To verify our approximation, we performed more ac-
curate variational calculations using the Hylleraas trial
wave function of the form

Un =Y Cijalrirdexp(—ary —bry)
i+j+k<N
+rhr] exp(—ary — bry)Jrly exp(—cris) @)

Firstly, we found the energy of the negative ion of hy-
drogen (Z = 1) by minimization of the energy functional
with respect to three nonlinear parameters a,b, ¢, and
the coefficients Cj ;. In agreement with our model of
unequivalent electrons, the exponents a and b typically
differ by a factor of two or three. For smaller charges
(Z < 1), the energy was determined by finding a sta-
tionary point of the energy functional instead of its min-
imum. At each step, the charge was decremented by a
small amount ~ 1073, and new coordinates of the sta-
tionary point were calculated by an iteration procedure
taking coordinates of the stationary point from the pre-
vious step as an initial guess to search a changed station-
ary point (for slightly decreased charge). In this way, we
found that the optimized parameters a, b, and c are real
for sufficiently large charges. If the charge is lower than
some value, then the minimum of the energy functional
disappears and turns to a complex stationary point (this
feature is typical for any system passing from a bound to
a quasistationary state that is treated variationally, for
example for Ne isoelectronic series with a nuclear charge
below Z, = 8.74 [10]). We found numerically the pa-
rameters a, b, ¢, and corresponding energy in the range
0< Z <1 with N up to 5.

The above method is a more general version of the com-
plex rotation or the complex stabilization method [23].
Instead of one non-linear complex variational parameter,
the rotation angle, we are using three non-linear varia-
tional parameters a, b, and c. Junker [24] used a similar
variant of the complex stabilization method with several
non-linear variational parameters. Like the method of
Junker [24], our method gives correct resonance energies
without taking into account an asymptotical form of the
resonant wave function, or imposing specific constrains
on the parameters a, b, and c.

We used the complex parameters a, b, and c calcu-
lated for the particular case of N =5 in order to extend
calculations to higher N by optimizing only the linear
coefficients C; j . " Almost exact” variational energy cal-
culated at N = 25 differs from the variational energy at
N =5 in the amount of less than 10™%. It is compared
in Fig. 1 with results of one-electron model calculations.
The real part of the ionization energy is always negative
at 0 < Z < Z.. It reaches its minimum at Z =~ 0.5,
and the width reaches its maximum approximately at
the same point. For small Z, convergence of the varia-
tional method becomes worse. It seems that both real
and imaginary parts tend to zero when Z — 0.

As it is expected, the one-electron model gives fairly
accurate results in the vicinity of the critical charge where
it models the threshold singularity. Here, the real part is
approximated more accurately than the imaginary part
because the singularity manifests mostly in the imaginary
part.

Dubau and Ivanov [14] calculated the two-electron
atom resonance in the vicinity of the critical charge using
1/Z expansion and the complex rotation method. Their
results agree with our calculation, see Table I. Since in
the latter case the charge is close to the critical charge,
we slightly corrected location of the singularity in our
model by fitting § at points Z = Z. = 0.911028 225 and
Z = 2 instead of fitting it at points Z =1 and Z = 2.

For isoelectronic series of Li in its ground state
(15225)2S, our model cannot be used because He™ does
not exist in the (1s?2s)2S state. However, in the ex-
cited (2p®)%S state the negative ion He™ is bound non-
relativistically. We tried to use our model for this ex-
cited state by taking the ionization energies as a dif-
ference between the energies of (2p3)*S states listed in
[25] and the energies of (2p?)3P states with the same
Z listed in [26]. The parameter ¢ is 0.239 and 0.204
for Li and He™ respectively. Extrapolation of the ion-
ization energy to the range Z < 2 by the method de-
scribed in Sec. II shows that Fi(Z) is zero at Z = 1.92,
and it has minimum at Z ~ 1.3, while the width has
maximum at Z ~ 1.4. For H™7, our extrapolation
gives Er(1) = —0.029 + 0.00002; (a.u.). Our values
for the position of the resonance —ReFE; and its half-
width ImFE; are considerably lower than results of com-
plex rotation calculations [8], Ey = —0.053 4 0.031:. It
is likely that our extrapolation becomes poorer as the
charge drops below the point where the extrapolation
has a minimum, as it can be seen on Fig. 1 for helium-
like ions. A simple three-point quadratic extrapolation
gives Fr(1) =~ 3E1(2) — 3E1(3) + Er(4) = —0.0298 which
is very close to the prediction of our model, while an
extrapolation with use of Eldén’s [12] three-parameter
formula does not work because it has a nearby pole at
Z ~ 1.3. It seems that any extrapolation over the pa-
rameter 1/Z from stable to unstable anions is unreliable
for light atoms because 1/Z differs considerably for singly
and doubly negative ions if N is small.

For four-electron isoelectronic series, results of using



our model for extrapolating the ionization energy are
shown in Fig. 2. We found that the curve hits the border
of continuum spectrum Fy = 0 at Z, = 2.864 [16] and
again at Z, = 2.17. Very small imaginary part exists
in the interval Z! < Z < Z.. The extrapolation gives
positive ionization energy for He™ —, Fr = 0.064. Since
a bound state of He™ ~ does not exist, it means that we
deal with a virtual state with an exponentially growing
wave function (corresponding to a pole of the scattering
function on the second sheet of the Riemann surface).
It may be also possible, that because of its limitations
our method fails for He™~ ion. We found positive ioniza-
tion energies for another doubly charged negative ions of
noble gases, for example Ne™ ~ (see Table III).

The doubly charged negative ion of atomic oxygen in
the same electronic configuration as a closed-shell 10-
electron configuration of a neutral atom of neon was ex-
tensively studied theoretically. Comparison of the ioniza-
tion energy of O™~ found by different methods is given in
Table II. For critical discussion of some of these results,
see [10]. Our result for the resonance position is in agree-
ment with most of the above results. However, our pre-
diction of the resonance width is significantly lower than
that of Herrick. It may be attributed to the fact that Her-
rick’s 3/2-power term, which responsible for the width, is
far from the actual singular behavior or to the fact that
our model systematically underestimates the width as it
happens for two-electron atoms. Recent multireference
configuration interaction calculations of Sommerfeld [9]
predict still larger width. However, this prediction may
be only an upper bound to the true resonance width be-
cause of possible missing correlation effects which stabi-
lize the metastable state [9]. The extrapolated ionization
energy as a function of Z is shown in Fig. 3. It has a rel-
atively small non-linear distortion and a weak singularity
at Z, = 8.75.

We extended calculations of resonances of doubly
charged negative ions to the first two rows of the Peri-
odic Table. Here, we considered only that ions for which
an isoelectronic singly charged negative ion is stable, for
example we omitted C~~ because N~ does not exist. Re-
sults are listed in Table III. For the closed shell ion S™—,
our result for the resonance position —ReFE is somewhat
larger than the previous estimates.

Herrick and Stillinger [10] suggested that stability of
negative ions increase with decreasing of v = (N —1)/Z,
or the effective charge seen asymptotically by the outer
electron. A greater stability would then be expected for
the ST~ ion (y = 1.0625) than for O™~ ion (1.125). Our
results for half-width of ST~ and O~ ~, 0.045 eV and 0.22
eV respectively, as well as results of Sommerfeld [9] (0.45
eV and 0.87 eV) support this argument. However, the
widths for B™—, Al ™, S™ calculated by Sommerfeld
[9] are larger than our results by one order in magnitude.

IV. DISCUSSION

We have investigated existence of resonance states for
doubly charged atomic negative ions by considering be-
havior of the ground state with decrease of the nuclear
charge. When the charge drops below the critical charge,
the bound state goes into a complex plane and becomes
a resonance. We attempt to approximate reasonably ac-
curate the function Ej(Z) in the vicinity of the criti-
cal charge Z. where it exhibits a singularity. Approx-
imating of isoelectronic ionization potentials by simple
analytic formulas with several adjustable constants was
widely used before appearance of powerful computers
more than 40 years ago. However, these formulas seem
inadequate for negative ionization potentials which are
complex-valued, with an imaginary part meaning a half-
width. Herrick and Stillinger [10] introduced a singular
term ~ (Z — Z.)?/? to their extrapolating scheme to ap-
proximate the complex energy at Z < Z..

Our method is some kind of refinements of Herrick and
Stillinger method of analytic continuation. We believe
that our model reproduces the threshold singularity of
the energy more realistically than 3/2-power singularity
of Herrick and Stillinger because it is based on a phys-
ical model which is realistic at Z ~ Z.. Generally, the
method of analytic continuation from bound to resonance
states appears very accurate when the threshold behavior
of the energy is incorporated into continuation scheme,
as it was demonstrated earlier for two-particle resonances
in nuclear physics, see Chapter 5 of the book [32].

The developed method was checked for a two-electron
atom, for which the Hylleraas-basis variational technique
gives reliable results. Position and width of the reso-
nance were compared with a prediction of the less accu-
rate model approximation. Results were found in agree-
ment.

The results of our approximate one electron model
agree with earlier estimates of closed-shell resonances of
O~ and S™7. In addition, the model predicts similar
resonances of another di-anions which are isoelectronic
to some bound singly-charged anion.

Our model invites further generalizations, for example
by considering a motion of two weakly bound electrons
instead of only one.

Although no multiple negative ions exist in a bound
state [33,34,16], some long-lived resonances of doubly
negative ions are observed experimentally [1]. Our re-
sults give evidence for some resonances that remain to
be observed.
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FIG. 1. Ionization energy for the helium isoelectronic se-
ries as a function of the nuclear charge including an instability
region Z < Z.. Bold lines are accurate results found by the
variational method with a large basis set. Thin lines are re-
sults of the simplified one-particle model described in Sec. II.
Solid and dashed lines are real and imaginary parts respec-
tively.

FIG. 2. Ionization energy for the beryllium isoelectronic
series extrapolated from bound systems Be and Li~ to a res-
onance state of He™~. A dashed line is an imaginary part of
the energy times 100. The system He™~ with a zero imagi-
nary part is presumably in a virtual state.

FIG. 3. Ionization energy for neon isoelectronic series ex-
trapolated from bound systems Ne and F~ to a resonance
state of O7 . A dashed line is an imaginary part of the en-
ergy which is half-width of the level.



TABLE I. Resonances in the helium isoelectronic series for charges below the critical charge

1/2 —Z?ReE ~Z7*ImE —Z72ImFE (CRM [14]) —Z 72 ImE (model)
1.11 0.497131 0.000 050 0.000 06 ~0.000 03

1.12 0.494 953 0.000 286 0.000 28 0.000 24

1.13 0.492 792 0.000 686 0.000 70 0.00057

1.14 0.490616 0.001 207 0.001 21 0.00098

TABLE II. Energy of O™~ resonance calculated by various methods

Reference Method —FEr, eV
Clementi and McLean [27] Hartree-Fock 8.30
Huzinaga and Hart-Davis [28] Hartree-Fock-Roothaan® 7.68
Cantor [29] Combining thermochemical data 7.94
Herrick and Stillinger [10] Extrapolating formula including 3/2 power term 5.38 — 0.651
Eldén’s [12] three-parameter formula 5.31
Kaufman’s [13] two-parameter formula 7.17
Kaufman’s [13] three-parameter formula 6.53
Quadratic fit 7.09
Gadzuk and Clark [30] Extrapolating of isoelectronic cases 8.8
Robicheaux et al. [11] Polynomial fit 7.2°
Sommerfeld [9] Complex absorbing potential 5.77 — 0.874
Present paper One-particle model 7.65 — 0.224

*Huzinaga and Hart-Davis listed the total energy. We found ionization energy by subtracting the Hartree-Fock total energy of

the corresponding singly charged negative ion that is listed in papers of Clementi et al. [27,31]
bEstimated width is greater than 1 eV.



TABLE III. Energies of doubly charged negative ions®

Z —Fr1, eV Lifetime, 10~ sec
2 He — -1.73
4Be ~ 3.43 1.1
5B~ 4.88 0.3
3.95P 0.036°
6 C~ 6.11°
TN~ 7.48 0.12
7.974
7.07¢
10 Ne™~ -0.92
12 Mg~ 1.79
13 Al=~ 3.44 3.0
3.02° 0.067°
14 Si—~ 4.76 0.5
4.12¢
15 P~ 4.95 0.5
4.47°
16 S~ 4.91 0.7
3.90° 0.071P
4.62°
4.7¢

#Tabulated energies are results of the present paper unless
marked otherwise. For energy of O™~ ion, see Table II.
PComplex absorbing potential method of Sommerfeld [9].
“Hartree-Fock-Roothaan calculations of Huzinaga and Hart-
Davis [28].

dHartree-Fock calculations of Clementi and McLean [27].
°Polynomial fit of Robicheaux et al. [11].
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