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Two methods are proposed to treat resonance states of
an atom with a nuclear charge less than a ”critical” value,
which is the minimum charge necessary to bind N electrons.
The first method represents a reformulated variational ap-
proach in order to consider resonance and bound states on
an equal footing. The second method represents an extrap-
olating scheme which is based on a one-particle model. The
energy of a two-electron atom was found in the entire range
0 < Z < oo. In the region 0.877 < Z < 0.901 near the crit-
ical charge Z. ~ 0.911 our results agree with the numerical
calculations of the complex energy by Dubau and Ivanov. Us-
ing the one-particle model, we estimated resonance energies
of doubly charged negative ions of atoms with Z < 18. Re-
sults for O7~ and ST~ are in good agreement with earlier
estimates.
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I. INTRODUCTION

There has long been an interest in the existence of
long lived doubly charged negative atomic ions [1-3].
The possibility of doubly charged negative ion resonances
has been raised in the case of oxygen by experiments of
Peart et al. [4] who observed resonance like structures
in electron-impact detachment cross section at energies
of 19.5 and 26.5 eV. A Hartree Fock calculation of the
closed-shell electronic configuration shows that the res-
onance energy of O™~ is about 8 eV above O™, which
later was confirmed and modified by configuration inter-
action and other methods [2]. More recently, Sommerfeld
et al. [5] performed a large scale multireference configu-
ration interaction calculation using the complex rotation
technique to investigate resonance states of H~~. Their
results predict the existence of a (2p*)*S resonance state
of H™~ with a resonance position of about 1.4 eV above
the (2p?)3P state of H™ and a lifetime of 3.8 - 10716 sec
[6]. Until now, to the best of our knowledge, all observa-
tion of long lived resonances of doubly negative ions are
associated exclusively with excited electronic configura-
tions.

Considering resonance energy as an analytic contin-
uation of bound state energy into an instability region,
with the change of some parameters of the system, allows
one to use essentially the same computational methods
for both bound and the resonance states. For example,
Rayleigh-Schrédinger perturbation theory originally de-
signed to approximate bound states has been successfully

used for resonance states together with methods of an-
alytic continuation such as conformal mapping [7] and
quadratic Padé approximants [8]. Applicability of varia-
tional methods was effectively extended to unstable qua-
sistationary states by the method of complex coordinate
rotation [9,10].

In this paper, we consider an atom in its ground elec-
tronic configuration state with the nuclear charge Z as
a variable. Integer values of Z with Z > N correspond
to positive ions, with Z < N to negative ions and with
Z = N to neutral atoms, where IV is the number of elec-
trons.

In Sec. II, we consider the ground state of the simplest
two-electron system as a function of the nuclear charge.
Here, we use precise variational calculations to determine
the energy in the entire range of positive Z and to an-
alyze its singularities. Exact results for this system are
compared with approximation that is used later in Sec.
1T for multi-electron atoms.

In Sec. III, we find an approximate dependence of the
energy on the nuclear charge by extrapolation from the
known energies of a neutral atom and the corresponding
negative ion. Energies and widths of doubly negative ions
for isoelectronic series exhibiting a bound singly charged
anion are estimated systematically for NV < 18. Results
for O™~ and S™ are in good agreement with a number of
earlier theoretical predictions. Estimated positions and
widths can be used to search for these resonances exper-
imentally.

II. TWO-ELECTRON ATOMS

The variational method gives accurate results for
bound states of He and H™, but it fails when the nuclear
charge is less than the critical value Z. ~ 0.911 028 225
when the state turns to a resonance. In order to under-
stand why the variational method becomes inadequate
when Z < Z., let us perform the following numerical

test. We use the Hylleraas trial wave function of the
form
YN = Z Ci,j,k[rirg exp(—ary — bra)
i+j+k<N
+r§r{ exp(—ary — bry)]r¥, exp(—cria) (1)

Minimization of the energy functional with respect to
the coeflicients Cj ; 1, reduces the calculation to an eigen-
value problem for a finite matrix whose size increases as
~ N3/6. We found several lowest eigenvalues for N = 20
with a = 0.1, b= 0.8, and ¢ = 0.



The ionization energy Ey = —E — Z2/2 as a function
of the nuclear charge is shown in Fig. 1 (solid lines). If
Z > Z. then the lowest level corresponding to maximum
ionization energy, the upper curve in Fig. 1, gives the
bound state energy. Fig. 1 shows that the upper curve
rapidly bends to zero after going below Z.. This means
that the variational method gives a trivial result Ey = 0
when the bound state ceases to exist. However, all the
curves corresponding both to the minimum and to higher
eigenvalues exhibit a typical avoided-crossing ladder pat-
tern of proliferation of the bound state into continuum as
a resonance. This situation which is similar to the two-
electron problem in finite space [11] is the result of using
of variational functions satisfying the boundary condi-
tions of a bound state but not the boundary conditions
of a resonance.

In order to calculate the resonance by variational
method without encountering avoided-crossings, we
make the boundary conditions more flexible by introduc-
ing a complex trial function. Until now, we considered
the exponential parameters a, b, and ¢ as real numbers
independent of Z, and minimized the energy functional
with respect to the linear coefficients C; ;5. Alterna-
tively, we can minimize the energy with respect to both
the linear and the non-linear parameters. In this way,
we found that the optimized parameters a, b, and ¢ are
real for sufficiently large charges. If the charge is lower
than some value (see Table I), then the minimum of the
energy functional no longer exists. This situation is dif-
ferent from minimizing over the linear parameters only
when the minimum of the energy functional always exists
because a real symmetric matrix always has a minimum
real eigenvalue. An analytic continuation of a minimum
of some function, when this minimum ceases to exist,
represents a complex stationary point. We found numer-
ically the parameters a, b, and ¢ as complex stationary
points in the range 0 < Z < 1 with up to N = 5. The
result for N = 5 is shown in Fig. 1. The real part is
a dashed line, and the imaginary part of the ionization
energy is a dot-dashed line. By allowing the parameters
of the trial function to be complex-valued, we eliminated
the avoided-crossings and made the results to converge
with increase of N. It is interesting that the traditional
variational method, with real parameters a, b, and c,
gives very accurate results at the inflection points, be-
tween adjacent avoided-crossings (see Fig. 1), but it never
reproduces the imaginary part of the resonance.

Let us consider the variational results from the point
of view of analytic structure of the energy as a function
of the nuclear charge. If the exponential parameters a, b,
and c are real, then the energy (shown by solid lines in
Fig. 1) is real and does not have singularities at the real
axis. However, for sufficiently small charge there is a pair
of complex conjugate square root branch points close to
the real axis joining each branch of the energy function
(shown as a continuous solid curve in Fig. 1) with the
neighbor branch (the nearest curve that lies above or be-
low). In contrast, if the exponential parameters a, b, and

c are allowed to have complex values then the variational
energy (shown by dashed and dot-dashed curves) has a
single singularity at the real axis at the point where the
minimum of the energy functional disappears and turns
to a complex stationary point. This singularity models
a singularity of the exact energy at the ”critical” charge
where the system goes from a bound state to a quasis-

tationary state. Positions of this singularity ZiN) for
different N are listed in Table 1.

The numerical evidence is that most of the varia-
tional singularities ZiN) give lower bounds for the critical
charge Z. =~ 0.911 028 and converge with the increase of
N although the convergence is not monotonous. Table I

lists also variational ” critical” charges Z(SN) defined as the
zeroes of the ionization energy —EWV)(Z) — Z2/2. The

”critical” charges ZC(N) could be calculated by solving a
generalized eigenvalue problem by a variational method

[12], they always give upper bounds for Z.. We found

)

that convergence of ZéN to the critical charge is much

faster than that of ZiN). By extending variational calcu-
lations of ZC(N) to higher N, the most accurate estimation
of the critical charge was found earlier [12]. Calculations

of ZﬁN) are generally more difficult than that of ZC(N) be-
cause they represent a singularity. They converge to the
singularity Z, of the function E(Z), which is believed to
limit the radius of convergence of the 1/Z expansion to
1/Z.. According to an earlier hypothesis based on the
analysis of the 1/Z perturbation series [11], Z, is slightly
smaller than Z. (see Table I) which means that F(Z,)
lies above the continuum, but still corresponds to a lo-
calized wave function. More elaborate computations of
the 1/Z series and its analysis by Baker et al. [13] show
that Z, and Z. are equal.

We used the complex parameters a, b, and c calculated
for the particular case of N = 5 in order to extend cal-
culations to higher N by optimizing only the linear coef-
ficients C; ;. We found that ”almost exact” variational
energy calculated at N = 25 differs from the variational
energy at N = 5 shown in Fig. 1 in the amount of less
than 0.5 - 10~%. Calculations show that the behavior of
the parameters a, b, and ¢ which are a stationary point
of the energy functional is more unpredictable than that
of the energy. Dependence of a, b, and con N at Z = Z,
is shown in Fig. 2. It seems that the parameters oscil-
late as N increases. In our previous paper [12], we used
near-average parameters a/Z = 0.35, b/Z = 1.03, and
¢/Z = 0.03 shown by dashed lines on Fig. 2 to perform
large-N calculations of Z..

Dependence of a, b, and ¢ on Z for N = 5 is shown
in Fig. 3. The parameters are continuous functions of Z
with a square root singularity at Z = Z,, below which
they become complex-valued. Numerical results show
many erratic swerves on the curves, this fact probably
indicates the existence of many singularities close to the
real axis.

Most of the above features are typical for any system



passing from a bound to a quasistationary state that is
treated variationally, for example for Ne isoelectronic se-
ries with a nuclear charge below Z, = 8.74 [14].

The above method is a more general version of the com-
plex rotation or the complex stabilization method [10].
Instead of one non-linear complex variational parameter,
the rotation angle, we are using three non-linear varia-
tional parameters a, b, and c.

Dubau and Ivanov [15] calculated the two-electron
atom resonance in the vicinity of the critical charge using
1/Z expansion and the complex rotation method. Their
results agree with our calculation, see Table II.

We extended calculations of the resonance to the range
of 0 < Z < 1. Results are shown in Fig. 4. The real part
of the ionization energy is always negative at 0 < Z < Z..
It reaches its minimum at Z ~ 0.45, and the width
reaches its maximum approximately at the same point.
For small Z, convergence of the variational method be-
comes worse. It seems that both real and imaginary parts
tend to zero when Z — 0.

Our results for small Z apparently contradict that of
Herrick and Stillinger [14]. They found that a small nega-
tive charge corresponds after suitable scaling to a tightly
bound ”di-electron” moving in a Coulomb field of the
nucleus. The behavior of E(Z) as Z — —0 has the form

E(Z) = —1/A—42% +2562" + O(Z°) (2)
Also by considering the simplest trial function

Pyar(r1,T2) = exp [—a(ry 4+ 72) — [ria] (3)

they found that E.(Z) = —1/4 — 4Z?% + 448Z* + ... at
Z — 0 in a good agreement with (2).

We re-examined the variational calculations with the
trial function (3) and found that Herrick and Stillinger
actually dealt with two different branches of the varia-
tional energy which are displayed in Fig. 5. The first
branch, the lower curve in Fig. 5, corresponds to a phys-
ical wave function with a positive exponential param-
eter a at sufficiently large Z. It goes almost to zero
as the charge decreases and becomes complex below
Z4 = 0.0846. The second branch corresponds to a diver-
gent wave function with a negative a.. It goes to —1/4 as
the charge decreases and then turns to a physical branch
with o > 1 at negative Z. The second branch is also
present in our calculations with the trial function (1),
but we always disregard it. According to our numerical
results, the energy goes to zero at Z — 0 (see Fig. 4).

III. MANY-ELECTRON ATOMS

Applying the complex rotation method to systems of
more than three charged particles faces slow convergence
because of the difficulty to simulate the oscillatory char-
acter of the wave functions [10].

The present study deals with the ground state ion-
ization energy of a multi-electron atom considered as a

function of a nuclear charge. Since the size of the vari-
ational basis set grows exponentially with the increase
of the number of electrons, we choose here to follow a
simpler path. We use the reliable data for the ionization
energy of a negative ion and a neutral atom, which were
calculated or experimentally measured. We are going
to use here an extrapolating technique in order to find
a complex energy of a doubly charged negative ion. In
contrast to simple extrapolating such as polynomial fits
or analytic formulas with a few fitting parameters [16],
we are solving here a one-particle Schrédinger equation
with a potential that models the movement of a loosely
bound valence electron that is going to dissociate when
the charge approaches its critical value. This model is
realistic in the vicinity of the critical charge and effec-
tively reproduces the non-trivial singularity [17] of the
ionization energy at the critical charge. Herric and Still-
inger [14] used for Ne isoelectronic series a polynomial
fitting formula plus a singular term ~ (Z — Z,)3/2. Their
method correctly reproduces a similar singularity of a
variational energy ~ (Z — ZN)3/2 but it fails for the
exact energy, which has a less trivial singularity as it was
established by Dubau and Ivanov [15].

A. Description of the one-particle model

For a given atom with IV electrons and a nuclear charge
Z, let us consider a spherically-symmetric potential (also
known as Hellmann potential [18]) of the form

V(r):f%Jr%(l

o 6761’) (4)
with vy = (N - 1)/Z.

Since in the neighborhood of the critical charge, par-
ticularly for the negative hydrogen ion [19], one of the
electrons is held much farther from the nucleus than the
others, we suggest a one-particle model of this electron
in an effective potential of the atomic core comprising of
the nucleus and N — 1 electrons. In scaled coordinates
r — Zr, this potential is approximated by our model
potential, Eq. (4). Our approximation is asymptotically
correct both at small and at large distances from the
nucleus where the scaled atomic core potential tends to
—1/r and to —(Z—N+1)/(Zr) respectively. The transi-
tion between the two different asymptotic regimes occurs
at distances roughly equal to 1/d that is about the atomic
core radius.

The second parameter of the model potential, Eq. (4),
d, is chosen so that the ionization energy in the potential
(4) is equal to the scaled ionization energy Z 2E1(Z) of
the atom. Note that for atoms with more than two elec-
trons, we consider here an excited state in the potential
(4) with the same spherical quantum numbers (n,[) as
quantum numbers of the loosely bound electron on an
external atomic shell (in this aspect our approach dif-
fers from the method of pseudo-potentials [20] that deals



with the ground state in a potential with an additional
repulsive term necessary to take into account orthogonal-
ity conditions). In this way, we map an arbitrary atom,
which is characterized by a pair of numbers (N, Z) to the
model one-particle system (4), which is characterized by
a pair of parameters (7, ). Results of fitting the param-
eter § for elements with N < 10 in our previous study
[21] give evidence that § depends on 1/Z almost linearly.

In summary, our model (4) effectively eliminates the
singularity in the energy function Ey(Z) to be extrapo-
lated by replacing it with a weakly varying function §(2)
that can be accurately extrapolated by a linear depen-
dence on 1/Z without taking into account a complex sin-
gularity at Z = Z,. In our previous study [21], we fitted
the parameter § to meet the known binding energy of the
neutral atom and its isoelectronic negative ion and then
found § as a function of 1/Z by a linear extrapolation.
After that, we solved Schrédinger equation with the po-
tential (4) and found some kind of extrapolation of the
ionization energy of an atom to the range of Z < N — 1.
Finally, by locating a zero of the ionization energy, we
found critical charges for most of atoms with N < 86. In
the present paper, we use the same technique to find res-
onances of doubly charged negative ions by calculating
the ionization energy at Z = N — 2.

B. Results

For two-electron isoelectronic series, the parameter 9 is
1.066 and 0.881 for He and H™ respectively. Decreasing
of § for H™ means increasing of the core radius that is
induced by stronger repulsion between electrons. Results
of extrapolating the ionization energy to the range Z < 1
with ¢ assumed as a linear function of 1/Z are shown in
Fig. 4 together with more accurate variational results.
As it was expected, the one-particle model gives fairly
accurate results in the vicinity of the critical charge where
it models the threshold singularity. Here, the real part is
approximated more accurately than the imaginary part
because the singularity manifests mostly in the imaginary
part. Numerical results for the imaginary part are given
in Table II. Since in the latter case the charge is close to
the critical charge, we slightly corrected location of the
singularity in our model by fitting § at points Z = Z. ~
0.911 and Z = 2 instead of fitting it at points Z = 1 and
Z =2.

For three-electron isoelectronic series, our model can-
not be used in the same way because He™ does not exist
and we don’t know the behavior near the singular point
Z. = 2. It is reasonable to expect that the resonance
H™~ is highly unstable because the isoelectronic ion He™
is already unstable. We tried to extrapolate the ioniza-
tion energy by fitting ¢ at points Z = 4 (Be™) and Z = 3
(Li) with subsequent extrapolation of § to Z = 1 by a
linear function in 1/Z and found a broad resonance with
Er = —0.109 — 0.089¢ for H™~.

For four-electron isoelectronic series, results of using
our model for extrapolating the ionization energy are
shown in Fig. 6. We found that the curve hits the border
of continuum spectrum Er = 0 at Z, = 2.864 [21] and
again at Z, = 2.17. Very small imaginary part exists
in the interval Z! < Z < Z.. The extrapolation gives
positive ionization energy for He™~, Ey = 0.064. Since
a bound state of He™~ does not exist, it means that we
deal with a virtual state with an exponentially growing
wave function. It may be also possible, that because of
its limitations our method fails for He™ ™ ion. We found
positive ionization energies for another doubly charged
negative ions of noble gases, for example Ne™~ (see Ta-
ble III).

The doubly charged negative ion of oxygen in the same
electronic configuration as a closed-shell 10-electron con-
figuration of a neutral atom of neon is the system that
was studied theoretically using various methods, see Ta-
ble ITI. However, this relatively stable ion was never ob-
served experimentally. The extrapolated ionization en-
ergy as a function of Z is shown in Fig. 7.

Comparison of the ionization energy of O™~ found by
different methods is given in Table III. For critical dis-
cussion of some of these results, see [14]. Our result for
resonance position is in agreement with most of the above
results. However, our prediction of the resonance width
is significantly lower than that of Herrick. It may be at-
tributed to the fact that Herrick’s 3/2-power term, which
responsible for the width, is far from the actual singular
behavior or to the fact that our model systematically
underestimates the width as it happens for two-electron
atoms.

We extended calculations of resonances of doubly
charged negative ions to the first two rows of the Peri-
odic Table. Here, we considered only that ions for which
an isoelectronic singly charged negative ion is stable, for
example we omitted C~~ because N~ does not exist. Re-
sults are listed in Table IV. For the closed shell ion S~
our ionization energy is slightly smaller than the previ-
ous estimates. The width for ST is considerably smaller
than for the ion O™~ in agreement with an argument of
Herrick and Stillinger [14].

IV. DISCUSSION

We have investigated the existence of resonance states
for doubly charged atomic negative ions using two meth-
ods. The first method is a reformulated variational ap-
proach to treat resonance states. In Sec. II, we traced the
position of the ground state energy level of two-electron
atoms as the nuclear charge decreases. When the charge
drops below the critical charge, the level goes into a com-
plex plane and becomes a resonance. With only minor
change of computer program, the Hylleraas-basis vari-
ational technique is used for accurate determination of
position and width of the resonance inside instability re-



gion of small charges. These results are used to check
the accuracy of the less accurate approximation devel-
oped in Sec. IIT necessary to study destabilization of the
ground state of a multi-electron atom with decrease of
its nuclear charge. The results of our second approach,
the approximate one particle model, agree with earlier
estimates of closed-shell resonances of O™~ and S™~. In
addition, the model predicts similar resonances of an-
other di-anions which are isoelectronic to some bound
singly-charged anion.

Our method is in fact some kind of refinements of
Herrick and Stillinger method of analytic continuation
[14]. We believe that our model reproduces the thresh-
old singularity of the energy more realistically than 3/2-
power singularity of Herrick and Stillinger. Generally,
the method of analytic continuation from bound to res-
onance states appears very accurate when the threshold
behavior of the energy is incorporated into continuation
scheme, as it was demonstrated earlier for two-particle
resonances in nuclear physics, see Chapter 5 of the book
[29].

Although no multiple negative ions exist in a bound
state [30,31,21], some long-lived resonances of doubly
negative ions are observed experimentally [1]. Our re-
sults give evidence for some resonances that remain to
be observed.
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FIG. 1. Variational results for the energy of the helium
isoelectronic series. Non-linear parameters of the Hylleraas
trial function (1) are a = 0.1, b = 0.8, and ¢ = 0. The size
of the basis set corresponds to N = 20. The restriction on
the summation indexes i 4 j2 + k% < N is used instead of the
more common restriction i+j+k < N in order to decrease the
number of terms in the sum (1) from ~ $N® to ~ ZN? as it
was suggested in [12]. These results are shown by solid lines.
Variational results with parameters a, b, and ¢ determined as
a complex stationary point of the energy functional for N =5
are shown by dashed and dot-dashed lines, real and imaginary
parts respectively.

FIG. 2. Dependence of the optimal variational parameters
a, b, and c calculated at Z = Z. on N.

FIG. 3. Optimal variational parameters a, b, and c for
N =5 as a function of the nuclear charge Z.



FIG. 4. Ionization energy for the helium isoelectronic series
as a function of the nuclear charge including an instability
region 0 < Z < Z.. Bold lines are accurate results found by
the variational method with a large basis set. Thin lines are
results of the simplified one-particle model described in Sec.
TITA. Solid and dashed lines are real and imaginary parts
respectively.

FIG. 5. Ionization energy for the helium isoelectronic se-
ries found using Stillinger’s trial function (3). The lower curve
approximates real ionization energy when Z > Z. and reso-
nance energy when Z < Z. (for very small Z < 0.085 it has
an imaginary part shown by a dashed line). The upper curve
is an unphysical branch of the function which tends to 1/4 at
Z = 0 and after continuation to negative Z turns to ioniza-
tion energy of a hypothetical system with Coulomb attraction
between the particles.

FIG. 6. Ionization energy for the beryllium isoelectronic
series extrapolated from bound systems Be and Li™ to a res-
onance state of He™ . A dashed line is an imaginary part of
the energy times 100. The system He™ ™ with a zero imagi-
nary part is presumably in a virtual state.

FIG. 7. Ionization energy for neon isoelectronic series ex-
trapolated from bound systems Ne and F~ to a resonance
state of O7 7. A dashed line is an imaginary part of the en-
ergy which is half-width of the level.

TABLE I. Singularities and critical charges for the helium
isoelectronic series.

N ASK Z

0 0.883998 0.925879
1 0.868 302 0.915729
2 0.889 957 0.913198
3 0.891 584 0.911 369
4 0.919 327 0.911265
5 0.899 586 0.911081
6 0.911070

Stillinger [11] 0.8941 0.9112

Baker et al. [13] 0.911028




TABLE II. Resonances in the helium isoelectronic series for charges below the critical charge

1/2 —Z?ReE ~Z7*ImE —Z72ImFE (CRM [15]) —Z 72 ImE (model)
1.11 0.497131 0.000 050 0.000 06 ~0.000 03

1.12 0.494 953 0.000 286 0.000 28 0.000 24

1.13 0.492 792 0.000 686 0.000 70 0.00057

1.14 0.490616 0.001 207 0.001 21 0.00098

TABLE III. Energy of O™~ resonance calculated by various methods

Reference Method —FEr, eV
Clementi and McLean [22] Hartree-Fock 8.30
Huzinaga and Hart-Davis [23] Hartree-Fock-Roothaan® 7.68
Cantor [25] Combining thermochemical data 7.94
Herrick and Stillinger [14] Extrapolating formula including 3/2 power term 5.38 — 0.651
Eldén’s [16] three-parameter formula 5.31
Kaufman’s [26] two-parameter formula 7.17
Kaufman’s [26] three-parameter formula 6.53
Quadratic fit 7.09
Gadzuk and Clark [27] Extrapolating of isoelectronic cases 8.8
Robicheaux et al. [28] Polynomial fit 7.2°
Present paper One-particle model 7.65 — 0.22¢

#Huzinaga and Hart-Davis listed the total energy. We found ionization energy by subtracting Hartree-Fock total energy of the
corresponding singly charged negative ion that is listed in papers of Clementi et al. [22,24]
PEstimated width is greater than 1 eV.

TABLE IV. Energies® of doubly charged negative ions®

VA —F1, eV Lifetime, 107 sec
2 He™~ -1.73
4 Be ™ 3.43 1.1
5B~ 4.88 0.3
6 C™~ 6.11°¢
TN~ 7.48 0.12
7.974
7.07¢
10 Ne™— -0.92
12 Mg~ 1.79
13 AlI™— 3.44 3.0
14 Si—~ 4.76 0.5
4.12¢
15 P~ 4.95 0.5
4.47°
16 S~ 491 0.7
4.62°¢
4.7°

#Tabulated energies are results of the present paper unless
marked otherwise.

PFor energy of O™~ ion, see Table III.
“Hartree-Fock-Roothaan calculations of Huzinaga and Hart-
Davis [23].

dHartree-Fock calculations of Clementi and McLean [22].
°Polynomial fit of Robicheaux et al. [28].
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