program fit1 c Fitting delta in the potential V(r) = -1/r+lambda(1-exp(-delta r))/r c in order to obtain exact energy for scaled two-electron atoms c for ARBITRARY ANGULAR MOMENTUM implicit real*8 (a-h,o-z) dimension tab(2,1000) common nq,en,enex,smax,alam,delta,v0,v1,lq,qll external func print*,'Enter Delta-guess, d-Delta' read*,delta0,dd c delta0=0.22 c dd=0.02 eps=1.d-9 eta=0 open(1,file='fit1-inp.dat') read(1,*)nel,nq,lq qll=lq*(lq+1)/2.d0 ntab=0 1 if(eof(1))goto2 ntab=ntab+1 read(1,*)alam,enex tab(1,ntab)=alam tab(2,ntab)=enex goto1 2 print*,'Ntab =',ntab open(2,file='fit1-out.dat') c Input file has a table of (lambda Ei) for V = -1/r1-1/r2 + lambda/r12 found exactly alam0=0 i=0 do 3 n=ntab,1,-1 i=i+1 rz=tab(1,n) enz=tab(2,n) rlam=1/rz alam=rlam*(nel-1) enex=enz/rz**2 dlam1=alam-alam0 delta1=delta0 if(i.le.2)goto4 delta1=delta1+dd*dlam1/dlam0 dd=dd/10 4 ifail=0 call c05agf(delta1,dd,eps,eta,func,a,b,ifail) if(ifail.ne.0)print*,'IFAIL =',ifail print10,alam,delta1 10 format(' -----',2f13.8) write(2,20)alam,delta1 20 format(1x,2f13.8) dd=delta1-delta0 if(abs(dd).lt.1.d-4)dd=1.d-4 delta0=delta1 alam0=alam dlam0=dlam1 3 continue end real*8 function func(delta1) implicit real*8 (a-h,o-z) dimension xpoint(4),hmax(2,4),y(9),w(9,9) common nq,en,enex,smax,alam,delta,v0,v1,lq,qll external coeffn,bdyval,monit,report,fcn,fcn1,gcond pi=4*datan(1.d0) toldefa=1.d-9 delta=delta1 tol0=toldefa tolg=tol0*10000 toll=tol0/4 x0=tol0**(1.d0/4)/3 60 format(9x,a19,e10.2) ind=nq-lq-1 c en0=-(1-alam)**2/2/nq**2 c if(abs(en0).lt.1.d-3)en0=-1.d-3 en0=-enex en=en0 d=abs(en0) if(d.lt.1.d-3/nq**2)d=1.d-3/nq**2 30 format(' lambda, q.number, Ecl, dE',f6.3,i4,2f20.12) c Xend is determined from eq. exp(-q.cl. int.)=sqrt(tolg) smax=-dlog(tolg)/2 x1=x0 x2=1.d9 2 if(veff(x2).gt.en)goto1 x2=0.9*x2 if(x2.lt.x0)print*,'Root of V(r) was not found!' goto2 1 if(veff(x1).gt.en .or. veff(x2).lt.en) . print*,'Root was not localised!' do 101 iter=1,100 x=(x1+x2)/2 vx=veff(x) if(vx.lt.en)x1=x 101 if(vx.ge.en)x2=x y(1)=0 tol=tolg ifail=0 xend=10000 call d02bhf(x,xend,1,y,tol,0,0.d0,fcn1,gcond,w,ifail) xend=x xpoint(1)=x0 xpoint(2)=x0 xpoint(3)=xend xpoint(4)=xend match=0 tol=tolg elam=en-d delam=2*d hmax(1,1)=0 maxit=100 maxfun=100 000 ifail=0 call d02kef(xpoint,4,match,coeffn,bdyval,ind,tol,elam,delam, . hmax,maxit,maxfun,monit,report,ifail) en=elam d=delam*2 c Xend is determined from eq. exp(-q.cl. int.)=sqrt(tol0) smax=-dlog(tol0)/2 x1=x0 x2=1.d9 12 if(veff(x2).gt.en)goto11 x2=0.9*x2 if(x2.lt.x0)print*,'2 Root of V(r) was not found!' goto12 11 if(veff(x1).gt.en .or. veff(x2).lt.en) . print*,'2 Root was not localised!' do 102 iter=1,100 x=(x1+x2)/2 vx=veff(x) if(vx.lt.en)x1=x 102 if(vx.ge.en)x2=x y(1)=0 tol=tolg ifail=0 xend=10000 call d02bhf(x,xend,1,y,tol,0,0.d0,fcn1,gcond,w,ifail) xend=x xpoint(1)=x0 xpoint(2)=x0 xpoint(3)=xend xpoint(4)=xend match=0 tol=tol0 elam=en-d delam=2*d hmax(1,1)=0 maxit=100 maxfun=100 000 ifail=0 call d02kef(xpoint,4,match,coeffn,bdyval,ind,tol,elam,delam, . hmax,maxit,maxfun,monit,report,ifail) en=elam d=delam*20 c d=delam*2 c Repeating the calculation with accelerating accuracy xpoint(1)=x0 xpoint(2)=x0 xpoint(3)=xend xpoint(4)=xend match=0 tol=toll elam=en-d delam=2*d hmax(1,1)=0 maxit=100 maxfun=100 000 ifail=0 call d02kef(xpoint,4,match,coeffn,bdyval,ind,tol,elam,delam, . hmax,maxit,maxfun,monit,report,ifail) print10,'del,lam,en,ex',delta,alam,elam,enex en=elam 40 format(f10.5,f16.8) 10 format(1x,a15,4f12.6) func=enex+en return end subroutine coeffn(p,q,dqdl,x,elam,jint) implicit real*8 (a-h,o-z) p=-.5d0 dqdl=-1.d0 q=veff(x)-elam return end subroutine bdyval(xl,xr,elam,yl,yr) implicit real*8 (a-h,o-z) dimension yl(3),yr(3) common nq,en,enex,smax,alam,delta,v0,v1,lq,qll h00=1 h01=v0*h00/(lq+1) h02=(v0*h01+(v1-en)*h00)/(2*lq+3) fun=xl**(lq+1)*(h00+h01*xl+h02*xl**2) dfun=xl**lq*((lq+1)*h00 . +(lq+2)*h01*xl+(lq+3)*h02*xl**2) yl(1)=fun yl(2)=dfun/2 yr(1)=1 p2=2*(veff(xr)-elam) dp2=2*veffdif(xr) y=p2 if(y.lt.0)y=-y p=dsqrt(y) yr(2)=-(dp2/p2/4+p) return end subroutine monit(maxit,iflag,elam,finfo) implicit real*8 (a-h,o-z) dimension finfo(15) nfun=finfo(4)+.1 c print10,maxit,nfun,elam,iflag 10 format('+',29x,'it,nfun,elam,ifl=',i3,i7,f20.12,i3) return end subroutine report(x,vv,jint) implicit real*8 (a-h,o-z) dimension vv(3) return end real*8 function v(x) implicit real*8 (a-h,o-z) common nq,en,enex,smax,alam,delta,v0,v1,lq,qll v0=-1 v1=alam*delta v=-1/x+alam*(1-exp(-delta*x))/x return end real*8 function veff(x) implicit real*8 (a-h,o-z) common nq,en,enex,smax,alam,delta,v0,v1,lq,qll c !!! v0=-1+alam v1=alam*delta veff=qll/x**2-1/x+alam*(1-exp(-delta*x))/x return end real*8 function vdif(x) implicit real*8 (a-h,o-z) common nq,en,enex,smax,alam,delta,v0,v1,lq,qll vdif=(1-alam)/x**2+alam*exp(-delta*x)/x**2*(1+delta*x) return end real*8 function veffdif(x) implicit real*8 (a-h,o-z) common nq,en,enex,smax,alam,delta,v0,v1,lq,qll veffdif=-2*qll/x**3+(1-alam)/x**2 . +alam*exp(-delta*x)/x**2*(1+delta*x) return end real*8 function gcond(t,y) implicit real*8 (a-h,o-z) dimension y(1) common nq,en,enex,smax,alam,delta,v0,v1,lq,qll gcond=y(1)-smax return end subroutine fcn(t,y,f) implicit real*8 (a-h,o-z) dimension y(3),f(3) common nq,en,enex,smax,alam,delta,v0,v1,lq,qll f(1)=y(2) f(2)=2*(veff(t)-en)*y(1) f(3)=y(1)**2 return end subroutine fcn1(t,y,f) implicit real*8 (a-h,o-z) dimension y(1),f(1) common nq,en,enex,smax,alam,delta,v0,v1,lq,qll a=veff(t)-en f(1)=0 if(a.le.0)return f(1)=dsqrt(2*a) return end