program fit c Finding delta that gives zero eigenvalue in the potential V(r) = -1/r+lambda(1-exp(-delta r))/r implicit real*8 (a-h,o-z) common nq,en,enex,smax,alam,delta,v0,v1 external func print*,'Enter Lambda-guess, dlambda' read*,alam0,dd eps=1.d-8 eta=0 print*,'Enter Number of electrons, Quantum number' read*,nel,nq ifail=0 call c05agf(alam0,dd,eps,eta,func,a,b,ifail) if(ifail.ne.0)print*,'IFAIL =',ifail print10,alam0,(nel-1)/alam0 10 format(' -----',2f13.8) 20 format(1x,2f13.8) stop end real*8 function func(alam0) implicit real*8 (a-h,o-z) dimension xpoint(4),hmax(2,4),y(9),w(9,9) common nq,en,enex,smax,alam,delta,v0,v1 external coeffn,bdyval,monit,report,fcn,fcn1,gcond pi=4*datan(1.d0) toldefa=1.d-9 alam=alam0 c Define Delta as a function of Lambda! if(nq.eq.1)delta=1.26422-0.408707*alam+0.0251437*alam**2 c if(nq.eq.1)delta=1.26461-0.410073*alam+0.0261292*alam**2 if(nq.eq.2)delta=0.530339-0.215727*alam-0.0557214*alam**2 if(nq.eq.3)delta=0.486165-0.870471*alam+1.10241*alam**2 . -0.588113*alam**3 tol0=toldefa tolg=tol0*10000 toll=tol0/4 x0=tol0**(1.d0/4)/3 60 format(9x,a19,e10.2) ind=nq-1 c en0=-(1-alam)**2/2/nq**2 c if(abs(en0).lt.1.d-3)en0=-1.d-3 en0=0 en=en0 d=(1-alam)**2/2/nq**2 30 format(' lambda, q.number, Ecl, dE',f6.3,i4,2f20.12) c Xend is determined from eq. exp(-q.cl. int.)=sqrt(tolg) smax=-dlog(tolg)/2 x1=x0 x2=1.d9 2 if(v(x2).gt.en)goto1 x2=0.9*x2 if(x2.lt.x0)print*,'Root of V(r) was not found!' goto2 1 if(v(x1).gt.en .or. v(x2).lt.en)print*,'Root was not localised!' do 101 iter=1,100 x=(x1+x2)/2 vx=v(x) if(vx.lt.en)x1=x 101 if(vx.ge.en)x2=x y(1)=0 tol=tolg ifail=0 xend=10000 call d02bhf(x,xend,1,y,tol,0,0.d0,fcn1,gcond,w,ifail) xend=x xpoint(1)=x0 xpoint(2)=x0 xpoint(3)=xend xpoint(4)=xend match=0 tol=tolg elam=en-d delam=2*d hmax(1,1)=0 maxit=100 maxfun=100 000 ifail=0 call d02kef(xpoint,4,match,coeffn,bdyval,ind,tol,elam,delam, . hmax,maxit,maxfun,monit,report,ifail) en=elam d=delam*2 c Xend is determined from eq. exp(-q.cl. int.)=sqrt(tol0) smax=-dlog(tol0)/2 x1=x0 x2=1.d9 12 if(v(x2).gt.en)goto11 x2=0.9*x2 if(x2.lt.x0)print*,'2 Root of V(r) was not found!' goto12 11 if(v(x1).gt.en .or. v(x2).lt.en)print*,'2 Root was not localised!' do 102 iter=1,100 x=(x1+x2)/2 vx=v(x) if(vx.lt.en)x1=x 102 if(vx.ge.en)x2=x y(1)=0 tol=tolg ifail=0 xend=10000 call d02bhf(x,xend,1,y,tol,0,0.d0,fcn1,gcond,w,ifail) xend=x xpoint(1)=x0 xpoint(2)=x0 xpoint(3)=xend xpoint(4)=xend match=0 tol=tol0 elam=en-d delam=2*d hmax(1,1)=0 maxit=100 maxfun=100 000 ifail=0 call d02kef(xpoint,4,match,coeffn,bdyval,ind,tol,elam,delam, . hmax,maxit,maxfun,monit,report,ifail) en=elam d=delam*20 c d=delam*2 c Repeating the calculation with accelerating accuracy c Xend is determined from eq. exp(-q.cl. int.)=sqrt(toll) smax=-dlog(toll)/2 x1=x0 x2=1.d9 22 if(v(x2).gt.en)goto21 x2=0.9*x2 if(x2.lt.x0)print*,'3 Root of V(r) was not found!' goto22 21 if(v(x1).gt.en .or. v(x2).lt.en)print*,'3 Root was not localised!' do 103 iter=1,100 x=(x1+x2)/2 vx=v(x) if(vx.lt.en)x1=x 103 if(vx.ge.en)x2=x y(1)=0 tol=tolg ifail=0 xend=10000 call d02bhf(x,xend,1,y,tol,0,0.d0,fcn1,gcond,w,ifail) xend=x xpoint(1)=x0 xpoint(2)=x0 xpoint(3)=xend xpoint(4)=xend match=0 tol=toll elam=en-d delam=2*d hmax(1,1)=0 maxit=100 maxfun=100 000 ifail=0 call d02kef(xpoint,4,match,coeffn,bdyval,ind,tol,elam,delam, . hmax,maxit,maxfun,monit,report,ifail) print10,'lam,del,xend,en',alam,delta,xend,elam en=elam 40 format(f10.5,f16.8) 10 format(1x,a15,4f12.6) func=en return end subroutine coeffn(p,q,dqdl,x,elam,jint) implicit real*8 (a-h,o-z) p=-.5d0 dqdl=-1.d0 q=v(x)-elam return end subroutine bdyval(xl,xr,elam,yl,yr) implicit real*8 (a-h,o-z) dimension yl(3),yr(3) common nq,en,enex,smax,alam,delta,v0,v1 h00=1 h01=v0*h00 h02=(v0*h01+(v1-en)*h00)/3 fun=xl*(h00+h01*xl+h02*xl**2) dfun=h00+2*h01*xl+3*h02*xl**2 yl(1)=fun yl(2)=dfun/2 yr(1)=1 p2=2*(v(xr)-elam) dp2=2*vdif(xr) y=p2 if(y.lt.0)y=-y p=dsqrt(y) yr(2)=-(dp2/p2/4+p) return end subroutine monit(maxit,iflag,elam,finfo) implicit real*8 (a-h,o-z) dimension finfo(15) nfun=finfo(4)+.1 c print10,maxit,nfun,elam,iflag 10 format('+',29x,'it,nfun,elam,ifl=',i3,i7,f20.12,i3) return end subroutine report(x,vv,jint) implicit real*8 (a-h,o-z) dimension vv(3) return end real*8 function v(x) implicit real*8 (a-h,o-z) common nq,en,enex,smax,alam,delta,v0,v1 v0=-1 v1=alam*delta v=-1/x+alam*(1-exp(-delta*x))/x return end real*8 function vdif(x) implicit real*8 (a-h,o-z) common nq,en,enex,smax,alam,delta,v0,v1 vdif=(1-alam)/x**2+alam*exp(-delta*x)/x**2*(1+delta*x) return end real*8 function gcond(t,y) implicit real*8 (a-h,o-z) dimension y(1) common nq,en,enex,smax,alam,delta,v0,v1 gcond=y(1)-smax return end subroutine fcn(t,y,f) implicit real*8 (a-h,o-z) dimension y(3),f(3) common nq,en,enex,smax,alam,delta,v0,v1 f(1)=y(2) f(2)=2*(v(t)-en)*y(1) f(3)=y(1)**2 return end subroutine fcn1(t,y,f) implicit real*8 (a-h,o-z) dimension y(1),f(1) common nq,en,enex,smax,alam,delta,v0,v1 a=v(t)-en f(1)=0 if(a.le.0)return f(1)=dsqrt(2*a) return end