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Abstract

One-particle model with a spherically-symmetric screened Coulomb potential

is proposed to describe a motion of a loosely bound electron in a multi-electron

atom when charge of the atomic nucleus which is treated as a continuous pa-

rameter approaches the "critical" value. Parameters of the model are chosen

to meet known binding energies of a neutral atom and the isoelectronic neg-

ative ion. This model correctly describes asymptotic behavior of the binding

energy in the vicinity of the critical charge and gives accurate estimations of

the critical charge.
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I. INTRODUCTION

Stability of a given quantum system of charged particles is a question of fundamental

importance in atomic, molecular, and nuclear physics. When charge of one of the particles

changes, stability of the system can break. Consider, for example, the ground state of a

helium isoelectronic ion as a function of the nuclear charge Z. Positive integer nuclear

charges correspond to stable systems H� (Z = 1), He (Z = 2), Li+ (Z = 3) etc. When the

charge is less than the critical charge Zc = 0:911, the ground state cease to exist1;2. The

critical charge is particularly important for the method of 1=Z-expansion where it determines

a radius of convergence of the series2.

The critical charges are observed for a more general three-body Coulomb system of

particles of variable mass3;4, for a molecule5, and for helium isoelectronic ions in space

of variable dimensionality6. The latter study6 points out resemblance of the behavior of

binding energy near the critical charge to the critical-point behavior of the free energy. The

analogy between breaking stability of quantum systems and phase transitions was elaborated

further in series of papers7{9. Using the method of �nite size scaling it was found that the

critical charge for lithium isoelectronic series is almost two9. Recently, critical charges were

determined for atomic isoelectronic series with number of electrons up to 19 by multireference

con�guration interaction computations10.

Here, we use a simple one-particle model to predict critical charges of nuclei inN -electron

atoms. A free parameter of the model is �tted to meet known binding energies of a neutral

atom and an isoelectronic negative ion. The critical charges are found for atoms up to Rn

(N = 86). For N � 18, our results agree with con�guration interaction computations of10.

II. ONE-PARTICLE MODEL

Superposition of the Coulomb and Yukawa potentials known as Hellmann potential11 is

widely used to represent interactions in atomic, molecular, and solid state physics, see12;13
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and references therein. Here, the model potential

V (r) = �
1

r
+




r

�
1 � e��r

�
(1)

is used to approximate an interaction between a loosely bound valent electron and a core in

a multi-electron atom.

Let us consider N -electron atom with a nuclear charge Z. In atomic units, the potential

of interaction between two electrons is 1=rij and the potential of interaction between an

electron and the nucleus is �Z=ri. The potential of interaction between a valent electron

and an atomic core consisting of the nucleus and other N � 1 electrons tends to �Z=r at

small r and tends to (�Z +N � 1)=r at large r. After the scaling transformation r ! Zr,

the potential of interaction between two electrons is �=rij with � = 1=Z, and the potential

of interaction between an electron and the nucleus is �1=ri. In these scaled units (that will

be used henceforth), the potential of interaction between a valent electron and a core tends

to �1=r at small r and tends to (�1 + 
)=r with 
 = (N � 1)� at large r. It is easy to see

that the model (1) correctly reproduces such an e�ective potential both at small r and at

large r. The transition region between �1=r-behavior and (�1+ 
)=r-behavior has the size

of the core that is about 1=�.

Eigenvalues in the potential (1) were found by two independent methods. The �rst

method is numerical solving of Sturm - Liouville eigenvalue problem by integration of the

di�erential equation. The energies can be easily calculated for any quantum numbers n, l

and any parameter 
, � as long as the state is bound. The second method is perturbation

theory for small �. The potential (1) is expanded into power series

V (r) = �
1

r
+ 
� �

1

2

r�2 +

1

6

r2�3 �

1

24

r3�4 + ::: (2)

where the zero-order term is the Coulomb potential. The zero-order energy is given by

Rydberg formula E0 = �1=2n
2. To �nd corrections to the zero-order energy, we use Rayleigh

- Schr�odinger perturbation theory for screened Coulomb potentials. The result is a power

series in �
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E = �
1

2n2
+

1X
i=1

Ei�
i (3)

where the coe�cients Ei were found up to high orders i � 100 by method used in14:

E1 = 
; E2 =

�
�
3

4
n2 +

1

4
l(l + 1)

�

; E3 = n

�
n2 �

1

2
l(l+ 1)�

1

2

�

; ::: (4)

The series (3) is summedusing quadratic Pad�e approximants that considerably accelerate the

convergence and allow to �nd even complex energies of resonances when the perturbation

parameter is su�ciently large15. For bound states, the results of summation appear the

same as the results of numerical integration (the �rst method) except in the vicinity of the

threshold, see discussion below.

Results for the ground state and for 2p state are shown on Fig. 1 and 2 respectively. At


 = 1, the potential turns into the short-range Yukawa potential. Fig. 1 and 2 demonstrate

that behavior of the function E(
) crucially depends on an existence of a bound state at


 = 1, i.e. weather or not � < �Yc where �Yc is a critical screening parameter for Yukawa

potential tabulated in16 (1.1906 for the ground state and 0.2202 for 2p state). If � < �Y
c

then the energy crosses the border of continuum spectrum at 
 > 1 with positive derivative,

otherwise it tends to Coulomb energy �(1�
)2=2n2 (fat lines on Fig. 1 and 2, corresponding

to �!1) and touches the border of continuum spectrum at 
 ! 1. In the latter case, the

wave function becomes more and more di�use as 
 ! 1, and at the limit 
 = 1 it is no more

square-integrable [17]. We found that the results of summation of the perturbation series

diverge in this region for S-states (l = 0). Perturbation theory fails because of considerable

di�usion of the wave function that becomes essentially di�erent from the zero-order Coulomb

wave function. However for l 6= 0 states, quadratic Pad�e approximants converge when


>

�

0:9, but to complex-valued energy, see Fig. 2. There, an e�ective potential (including the

centrifugal term �1=2r2) has a secondary minimum at relatively small r that gives rise of

a quasistationary state, see Fig. 3. Note that the bound state is centered around another

shallow minimum which is far from the origin. When 
 � 1, the quasistationary state

continues to exist while the di�use bound state merges to continuum spectrum.
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Fig. 4 shows the derivative of the energy for the ground state. It demonstrates that the

derivative at the threshold may be nonzero or zero for � < �Y
c
or � > �Y

c
respectively.

The critical parameter 
 = 
c where the level enters continuum spectrum E = 0 is of

particular interest. For small �, it can be found in the form of an expansion


c(�) = ��1
1X
i=1


i�
i (5)

Coe�cients 
i are found from the equation E = 0 where E is represented by the series (3),

coe�cients Ei are given by formulas (4) with substitution 
 ! 
c. It is important that all

coe�cients Ei are polynomials in 
 of degree [i=2], except i = 1 when the degree is 1 (this

fact was supported by computations up to i � 100). By elementary algebraic manipulations,

we found that


0 =
1

2n2
; 
1 =

1

2n2

�
3

4
n2 �

1

4
l(l+ 1)

�
; ::: (6)

The series (6) is summed by quadratic Pad�e approximants. We found that the function 
c(�)

exhibits the critical behavior at 
 = 1 similar to the behavior of the energy E(�) at E = 0

for Yukawa potential, see Fig. 5. If l = 0, then 
c(�) approaches 
 = 1 at � = �Yc with zero

derivative and a virtual state appears when � > �Y
c
. If l 6= 0, then 
c(�) crosses the line 
 = 1

with non-zero derivative and a resonant state appears when � > �Yc . Dependence of 1 � 
c

on � is shown on Fig. 5. Note that 1 � 
c is an eigenvalue of the generalized Schr�odinger

equation

 
�
1

2

d2

dr2
+

l(l+ 1)

2r2
�

e��r

r

!
P (r) = (1 � 
c)

1 � e��r

r
P (r) (7)

Eq. (7) has a form of the Schr�odinger equation for Yukawa potential,

 
�
1

2

d2

dr2
+

l(l+ 1)

2r2
�

e��r

r

!
P (r) = EY P (r) (8)

with an additional weight operator [1 � exp(��r)]=r in the r. h. s. Moreover, we found

that eigenvalues of Eq. (7) are similar to eigenenergies in Yukawa potential, compare upper

and lower panels of Fig. 5. Complex eigenenergies assume resonant states (the real part is
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the position of a resonance, and the imaginary part is the half-width). Meaning of complex

critical parameters is unclear for us.

Another simple one-dimensional potential of a square well with barrier was proposed to

describe mechanism of pushing of a bound state into continuum18. It was found that the

bound state turns to a resonance via a virtual state. There are no virtual states in our

model potential (1) because it has Coulomb barrier when � > 1, cf. Fig. 2 from18 with Fig.

1 from the present paper.

III. MAPPING OF A MULTI-ELECTRON ATOM TO THE ONE-PARTICLE

MODEL

Analysis of electron-electron correlations in a negative atomic ion shows that one of the

electrons is held much farther from the nucleus than the others19. It suggests one-particle

model of this electron regarded as weakly bound in a short-range attractive potential. Even

a simple zero-range model potential gives very good description of photoabsorption processes

in H�, see references in19.

The present study is not restricted to negative ions only. Our model potential (1) ap-

proximates both short-range potential of a negative ion (Z = N�1) and a partially screened

long-range Coulomb potential (Z 6= N � 1). The free parameter � is chosen to make the

binding energy �E in the potential (1) be equal to the ionization energy of an atom (or an

ion) which is known from theory20;22 or experiments21;23. Results of �tting the parameter �

for elements with 5 � N � 10 having 2p-electron on an external shell are shown on Fig. 6.

It is clear that � depends on 
 almost linearly. We found that it is also the case for another

light atoms with 2 � N � 18 for which energies of the isoelectronic series are available in

literature20. Behavior of the function �(
) near 
 = 1 that corresponds to Z = N � 1 can

be fairly well approximated by linear dependence

� =
�0(
 � 
1)� �1(
 � 
0)


0 � 
1
(9)
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where (
0; �0) are parameters corresponding to the neutral atom and (
1; �1) are parameters

corresponding to the isoelectronic negative ion (if the negative ion does not exist, we use

parameters corresponding to the positive ion). Ionization energy EI is calculated by solving

the Schr�odinger equation with the potential (1) at 
 = (N � 1)� and � determined by Eq.

(9). In essence, our method consists of extrapolation of the binding energy from two data

points 
 = 
0 = (N � 1)=N (neutral atom) and 
 = 
1 = 1 to the region of 
 � 1.

Let us consider the ground and an excited 1s 2s 3S states of helium isoelectronic ions (Fig.

7). For the ground state, dependence of ionization energy on 
 is typical for multi-electron

atoms having stable negative ions10. We reproduce the ionization energy curve using only

the energies of He and H� as it was described above within an accuracy of 5 � 10�4. Since

1s 2s 3S state is unstable for Z = 1, we used ionization energies of Li+ (instead of H�) and

He to perform the extrapolation. An accuracy of extrapolation for 1s 2s 3S state is better

than 10�5. It is evident that direct extrapolation of the binding energy by a linear �t is

inaccurate because of strong non-linearity in the vicinity of the critical point, see Fig. 7 and

similar Fig. 2, 3 of the paper22. In addition, the energy has a singularity at the critical point

which deteriorates further an accuracy of linear extrapolation. Our method takes advantage

of the fact that an atomic core depends much weakly on � in the vicinity of �c than an orbit

of the outer electron that is about to dissociate. Numerical evidence is that reciprocal of

the core radius can be extrapolated fairly well by a linear function (9).

The critical charge is found from an equation

EI(�c) = 0; Zc = 1=�c (10)

where EI is the extrapolated ionization energy. Results are given in table 1. They agree

(mostly within an accuracy of 0.01) both with results of sophisticated ab initio calculations

of Hogreve10 and with critical charges extracted by us from Fig. 2, 3 of22 (shown in the

last two columns of table 1). Table 1 lists also quantum numbers of an outer-shell electron

and parameters �0 and �1 for neutral atoms and isoelectronic negative ions. Note that if a

negative ion does not exist, then Zc = N � 110.
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Our computations of critical charges were extended to another elements with N > 18

with stable negative ions. Here, we used experimental ionization energies from atomic data

tables23. For many atoms with N > 18, the ionization energy is not a continuous function

of Z because ground-state electronic con�gurations of N -electron atom and N � 1-electron

positive ion may be di�erent from that of N -electron negative ion and N � 1-electron atom.

For example, ionization of a neutral atom of scandium (N = 21) consists of transition from

the term 3d 4s2 2D3=2 (Sc) to 3d 4s 3D1 (Sc
+), while ionization of an isoelectronic negative

ion consists of transition from 4s2 4p 2P1=2 (Ca�) to 4s2 1S0 (Ca). We conjecture here

that the critical charge con�gurations are the same as that for the negative ion. To make

ionization energy a continuous function of Z, we �xed con�gurations to that of the negative

ion and N � 1-electron atom (ionized state). For example, for a neutral atom of scandium

(N = 21) we considered a di�erence between energies of terms 4s2 4p 2P1=2 (Sc
�) and 4s2

1S0 (Sc
+�) as a "modi�ed" ionization energy which is a continuous function of charge to be

extrapolated to the region of 
 > 1. Results for critical charges are given in table 2.

Experimental results for negative ions of lantanides remain unreliable24;25. We did not

calculate critical charges for lantanides. Since electron a�nities of lantanides are relatively

small � 0:5 eV21, we expect that surcharges are small also (grey areas on Fig. 8).

For N = 56 (Ba), Eq. (10) has no roots and our method fails (possibly because of errors

in available experimental data).

To our knowledge, results for N > 18 are new. We found that "surcharge" Se(N) =

N � Zc is correlated with electron a�nity EA(N � 1), see Fig. 8. Surcharges and a�nities

reach maxima for N corresponding to noble gases (and N � 1 corresponding to halogens).

We found that surcharge never exceeds two, i. e. we con�rmed non-existence of doubly

negative ions10. Note that surcharge of noble gases increases with N despite electron a�nity

of corresponding halogens slightly decreases.
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IV. DEPENDENCE OF THE CRITICAL CHARGES ON A MAGNETIC FIELD

Within the one-particle model, an interaction with a magnetic �eld directed along z-axis

is described by a diamagnetic term

VI(r) =
B2�2

8Z4
; �2 = x2 + y2 (11)

where the magnetic �eld strength B is given in atomic units (1 a.u =2.3505 109 G). By

solving the Schr�odinger equation with the model potential (1) plus the interaction term (11)

at zero energy, we found critical parameters 
c as a function of the scaled magnetic �eld

B0 = B=Z2

c
. By varying B 0, we determined dependence of Zc = (N � 1)=
c on B = B0Z2

c

parametrically.

The parameter � was set to �c of a free atom (at zero �eld). We found that increase

of a magnetic �eld generally leads to decrease of the critical charge. Although weakening

interaction with the atomic nucleous makes the atomic core less compact and decreases the

parameter �, increase of diamagnetic interaction produces an opposite e�ect (tightens the

atomic core). We conjecture here, that both e�ects almost compensate one another making

the assumption � =const a good approximation.

Weak �eld interacts mostly with a loosly bound electron and does not change an atomic

core (the nucleus plus N � 1 electrons). However, strong magnetic �eld can signi�cantly

change the shape and the radius of an atomic core breaking the model.

Accuracy of our model was tested for helium isoelectronic series. Critical charges were

found independently (without any additional simpli�cations) by direct variational calcu-

lations (details will be published elsewhere). Results of comparison with the one-particle

model are shown on Fig. 9. For weak �elds B < 0:2, there is a good agreement between

the one-particle model and more accurate variational calculations. For strong �elds, our

model signi�cantly underestimates the critical charge because it does not take into account

squeezing of the atomic core.

Results of surcharge, Se, for closed-shells noble gases are shown in Fig. 10. Results for

the critical magnetic �eld Bc, the minimum �eld necessary to obtain the surcharge Se = 2,
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for selected atoms are listed in Table 3. We have found that dianions with closed shell

con�gurations such as O�2, S�2, Se�2, Te�2, and Po�2 became stable at about 1 to 2 a.u.

However, dianions with an external s-electron such as Ne�2, Ar�2 and Kr�2 do not exist

at any magnetic �eld strength, B. This can be attributed to the fact that because of the

di�erent symmetry between s and p orbitals, the average< �2 > for p-electron will be smaller

than that for s-electron and as a result the shift in the ionization energy will be larger in the

presence of a magnetic �eld for an atom with a weakly bound p-electron. Although it is not

feasible to obtain such dianions in the laboratory, because of the strong magnetic �eld, they

might be of considerable interest to models of magnetic white dwarf stellar atmospheres.
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TABLES

TABLE I. Critical charges for atoms with N � 18

N nl �0 �1 Zc [10] [22]

2 He 1s 1.066 0.881 0.912 0.91 0.92

4 Be 2s 0.339 0.258 2.864 2.85 2.86

6 C 2p 0.255 0.218 4.961 4.95

7 N 2p 0.242 0.213 5.862 5.85 5.85

9 F 2p 0.239 0.215 7.876 7.87 7.87

10 Ne 2p 0.232 0.211 8.752 8.74 8.74

12 Mg 3s 0.162 0.130 10.880 10.86

14 Si 3p 0.128 0.112 12.925 12.93 12.90

15 P 3p 0.123 0.110 13.796 13.78 13.79

16 S 3p 0.124 0.111 14.900 14.89 14.90

17 Cl 3p 0.120 0.109 15.758 15.74 15.75

18 Ar 3p 0.117 0.108 16.629 16.60 16.61
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TABLE II. Critical charges for atoms with N > 18

N nl �0 �1 Zc

20 Ca 4s 0.0897 0.0748 18.867

21 Sc 4p 0.0776 0.0678 19.989

22 Ti 4p 0.0764 0.0675 20.958

23 V 3d 0.0970 0.0913 21.992

24 Cr 3d 0.0966 0.0912 22.946

25 Mn 4s 0.0871 0.0751 23.863

27 Co 3d 0.0962 0.0913 25.985

28 Ni 3d 0.0959 0.0912 26.941

29 Cu 3d 0.0956 0.0911 27.900

30 Zn 4s 0.0839 0.0748 28.817

32 Ge 4p 0.0745 0.0676 30.946

33 As 4p 0.0727 0.0670 31.814

34 Se 4p 0.0728 0.0673 32.887

35 Br 4p 0.0715 0.0667 33.747

36 Kr 4p 0.0704 0.0661 34.614

38 Sr 5s 0.0573 0.0489 36.830

39 Y 5p 0.0505 0.0451 37.986

40 Zr 5p 0.0487 0.0450 38.942

41 Nb 4d 0.0614 0.0580 39.912

42 Mo 5s 0.0544 0.0485 40.802

43 Tc 5s 0.0544 0.0488 41.849

44 Ru 4d 0.0607 0.0580 42.937

45 Rh 5s 0.0537 0.0485 43.801

46 Pd 5s 0.0533 0.0485 44.797

47 Ag 5s 0.0545 0.0491 45.897
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48 Cd 5s 0.0528 0.0484 46.789

50 Sn 5p 0.0486 0.0450 48.945

51 Sb 5p 0.0479 0.0447 49.807

52 Te 5p 0.0478 0.0447 50.833

53 I 5p 0.0472 0.0445 51.715

54 Xe 5p 0.0466 0.0442 52.590

57 La 6p 0.0349 0.0321 55.954

58 Ce 5d 0.0419 0.0400 56.905

60 Nd 5d 0.0423 0.0400 58.948

70 Yb 6p 0.0353 0.0322 68.985

74 W 5d 0.0415 0.0400 72.955

75 Re 5d 0.0415 0.0400 73.884

78 Pt 5d 0.0412 0.0399 76.822

79 Au 6s 0.0360 0.0338 77.656

80 Hg 6s 0.0359 0.0338 78.650

82 Pb 6p 0.0340 0.0321 80.946

83 Tl 6p 0.0341 0.0321 81.929

84 Po 6p 0.0338 0.0320 82.837

86 Rn 6p 0.0333 0.0317 84.518

89 Ac 7p 0.0256 0.0240 87.958
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TABLE III. Critical magnetic �elds for N-electron atoms

Atom N Bc

He 2 No

Be 4 No

C 6 1.89

N 7 1.63

F 9 1.98

Ne 10 1.70

Mg 12 No

Si 14 3.36

P 15 1.90

S 16 2.65

Cl 17 1.71

Ar 18 1.26

Kr 36 1.32

Xe 54 1.21

Hg 80 No

Rn 86 1.06
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Figure captions

Fig. 1. Ground-state energy in the screened Coulomb potential (1), in atomic units.

Dashed lines are imaginary parts, or half-widths of a quasistationary level.

Fig. 2. The same as Fig. 1 but for an excited 2p-state.

Fig. 3. Shape of an e�ective potential for l = 1, � = 0:25, and 
 = 0:97. E is energy of

the bound state localized around the shallow minimum at r � 60. E1 is real part of energy

of the quasistationary state associated with a deep minimum at relatively small r.

Fig. 4. Derivative of the ground-state energy in the screened Coulomb potential (1).

Dashed lines are imaginary parts the derivative (for quasistationary levels).

Fig. 5. Critical parameter 
c, Eq. (7), and energy levels in Yukawa potential, Eq. (8), as a

function of the screening parameter � found by summation of the corresponding perturbation

series. Dashed lines are imaginary parts.

Fig. 6. The parameter � of the one-particle model for di�erent isoelectronic series. Here,

N is the number of electrons (N � 18) and 
 = (N � 1)=Z.

Fig. 7. Binding energy (found by summation of 1=Z-expansion) for the groung and an

excited 1s 2s 3S states of two-electron isoelectronic series. Dashed curves are errors of our

extrapolations, see the text.

Fig. 8. Electron a�nities and surcharges as functions of the number of electrons.

Fig. 9. Critical charge for helium isoelectronic series in a magnetic �eld. Solid line -

exact variational calculation, dashed line - one-particle model.

Fig. 10. Surcharge, Se, as a function of the magnetic �eld strength, B, for noble gas

atoms.
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