
Variational calculations of ionization energies of few-

electron atoms with a variable charge

The trial wave function is constructed as a linear combination of products of single-particle

functions of the form

Y r arl m
l

s, ( , ) exp( )θ ϕ χ− , (1)

where Yl m,  is a spherical harmonics, χ s  is a spin function ( χ α1 = , and χ β2 = ).

Firstly, consider a two-electron atom. For the ground state, we construct the trial function as

e ea r a r a r a r− − − −+1 1 2 2 2 1 2 1 . (2)

Parameters a1  and a2  are found by minimization of the energy functional, e. i. an expectation value

of Hamiltonian
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The energy functional is a rational function of a1 , a2  (howewer, the expression is lengthy).

Results for helium ( Z = 2 ), H- ( Z =1), and Li+ ( Z = 3 ) are given in the following table.

Z a1 a2 Evar % of exact

1 1.04 0.28 -0.5133 97.3

2 2.18 1.19 -2.8757 99.0

3 3.29 2.08 -7.2467 99.6

Ionization energy E Z Z E ZI ( ) / ( ) ( )= − −1 2 2  is shown on Fig. 1 together with results of summation

of 1/Z-expansion. Ionization energy is zero at Z0 0 9538= .  that is larger than exact critical charge

Zc .= 0 9110 . Below Z1 0 9276= . , that corresponds to E = −0.4246 , a1 1 014= . , and a2 0 156= . , the

minimum of the energy functional disappears (turnes to a complex stationary point). At Z Z= 1 , the

energy has a singularity ~ ( )c
/Z Z− 3 2 . Derivatives of the energy shown on fig. 2 and 3 have



singularities also. Note that exponential parameters a1 , a2  shown on fig. 4 remain positive at

Z Z= 1 .

Similar calculations were done for a simplified trial function that does not include exchange:

e a r a r− −1 1 2 2 . (1a)

Fig. 4.1 shows the results. We found a symmetric minimum at a a Z1 2 5 16= = − /  that gives well-

known approximation E Z= − −( / )5 16 2 . For sufficiently small Z , we found also an asymmetric

minimum which turnes to a global minimum at Z <1 08.  (however it grossly underestimates the

energy). So, including exchange (trial function (1)) significantly improves an accuracy for weakly

bound states (near the critical charge).

For the lowest triplet state of a two-electron atom, we construct the trial function as

e ea r a r a r a r− − − −−1 1 2 2 2 1 2 1 , (4)

where parameters a1  and a2  are found by minimization of the corresponding energy functional.

Results for helium ( Z = 2 ) and Li+ ( Z = 3 ) are given in the following table.

Z a1 a2 Evar % of exact

2 1.97 0.32 -2.1606 99.3

3 2.93 0.60 -5.0718 99.2

Ionization energy E Z Z E ZI ( ) / ( ) ( )= − −1 2 2  is shown on Fig. 5 together with results of summation

of 1/Z-expansion. Ionization energy is zero at Z0 1= . Below Z1 0 9928= . , that corresponds to

E = −0.4929 , a1 1 00003= . , and a2 0 0135= − . , the minimum of the energy functional disappears

(turnes to a complex stationary point). At Z Z= 1 , the energy has a singularity ~ ( )c
/Z Z− 3 2 .

Derivatives of the energy shown on fig. 6 and 7 have singularities also. Note that one of exponential

parameters a1 , a2  (shown on fig. 8) turnes to zero at Z Z= 0 , that means that a trial wave function

(4) is non square integrable at Z Z= 0 . Finding a critical index, i. e. establishing behavior

E Z ZI ~ ( )− 0
α  is of particular interest. In order to find α , we plot ( )

/I

I
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E
− 0  vs. Z  at

Z Z≈ 0 . Fig. 9 shows that the limit of this quantity at Z Z→ 0  is around α = 2 .

Fig. 10 shows the ratio of variational ionization energy to exact one (1/Z-expansion) for singlet

and triplet states. When it is close to one, the variational method is accurate. For both states,



accuracy increases with Z, because an electron interaction weakens, and Hartree - Fock

approximation is more accurate for large Z. For the triplet state, accuracy increases also when Z

approaches to one. It can be explained by separation of the outer electron from the core electron that

makes Hartree - Fock approximation more accurate. In this region, the second derivative tends to 1

(see fig. 7) that is E ZI ~ ( ) /−1 22  when Z → 1 . It can be interpreted as the binding energy of the

outer electron on the ground state in an effective Coulomb potential − −( ) /Z r1  moving on an orbit

of big radius 1 1/ ( )Z − .

P-states of two-electron atoms

Let us consider a doubly excited 2 p P2 3  state that is equivalent to the ground state in five-

dimensional space. We construct a trial wave function in the same spirit as

Y r a r Y r a r Y r a r Y r a r1 0 1 1 1 1 1 1 1 2 2 2 2 2 1 0 2 2 2 1 2 1 1 1 1 1 2 1, , , ,( , ) exp( ) ( , ) exp( ) ( , ) exp( ) ( , ) exp( )θ ϕ θ ϕ θ ϕ θ ϕ− ⋅ − + − ⋅ − .

(A)

However, there is an ambiguety in the choice. Along with a trial function (A), we consider another

one,

Y r a r Y r a r Y r a r Y r a r1 0 1 1 1 1 1 1 1 2 2 2 2 2 1 0 1 1 1 2 1 1 1 2 2 2 1 2, , , ,( , ) exp( ) ( , ) exp( ) ( , ) exp( ) ( , ) exp( )θ ϕ θ ϕ θ ϕ θ ϕ− ⋅ − + − ⋅ −

+ ( )r r1 2→← . (B)

If a a1 2=  then the functions (A) and (B) are the same. Comparison of results of minimization of the

energy functional for helium ( Z = 2 ) for trial functions (A) and (B) are given in the following table.

Trial function a1 a2 Evar % of exact

A 0.84 0.84 -0.6988 98.4

B 1.04 0.62 -0.7044 99.1

Ionization energy E Z Z E ZI ( ) / (8 ) ( )= − −1 2  is shown on Fig. 11. We found that the choice (B)

significantly improves an accuracy. When Z <1 2. , obtained ionization energy increases at least two

times. For the choice (A), there is a secondary minimum with a a1 2≠  that turnes to a global one

when Z <112. . However, it gives a considerable under-estimation of the true ionization energy. For

the choice (A), the curve does not have singularities near Z =1. At Z =1, it goes to zero with zero

derivative, while one of exponential parameters goes to zero. For the choice (B), the curve goes to



zero near Z = 1 02. . At the point Z1 1 0160= . , that corresponds to E = −0 1280. , a1 0= .496 , and

a2 0 114= . , there is a singularity. It reflects existance of critical charge Zc .= 0 9948 . In a very

narrow region 1 1< <Z Z , there is another minimum of the energy functional for the trial function

(B) that gives a positive ionization energy (it is not shown on the figure 11).

Let us consider the lowest P-states, 1 1s2 p P  and 1 3s2 p P . The trial function was chosen in

the form

Y r a r a r r r1 0 1 1 1 1 1 2 2 1 2, ( , ) exp( ) exp( ) ( )θ ϕ − ⋅ − ± →← (5)

Results for helium ( Z = 2 )are given in the following table.

State a1 a2 Evar % of exact

1 1s2 p P 2.00 0.48 -2.1224 99.93

1 3s2 p P 1.99 0.54 -2.1307 99.88

Ionization energy E Z Z E ZI ( ) / ( ) ( )= − −1 2 2  is shown on Fig. 12 for 1 3s2 p P  state. The curve

touches the ionization border ( EI = 0 ) at the point Z0 1=  that is an exact critical charge. However,

there are no singularities near Z Z= 0 . Note that another trial function similar to (B) may be

constructed also, but they remain to be tested.

Ground state of three-electron atoms

A standard choice of a three-electron Hartree - Fock trial function is a Slater determinant. We

construct a Slater determinant from exponential coordinate functions:
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Finally, we used the choice (B). The reason is consistency of three-electron energy functional with

two-electron energy functional, when the third electron goes to infinity ( a3 0→ ) which happens

when the system ionizes. The limit a3 0→  of the energy functional corresponding to (A) is a

function that is not symmetric in variables a1 , a2 . So, it cannot be the same as two-electron energy

functional corresponding to a trial function (2) that is symmetric in a1 , a2 . It can be shown, that the

limit a3 0→  of the energy functional corresponding to (B) is the same as two-electron energy

functional corresponding to a trial function (2).

Results for lithium ( Z = 3 ), Be+ ( Z = 4 ), and B2+ ( Z = 5) are given in the following table.

Z Trial function a1 a2 a3 Evar % of exact

3 A 2.67 2.67 0.34 -7.4014 99.0

3 B 3.28 2.07 0.34 -7.4266 99.3

4 B 4.34 2.97 0.62 -14.2392 99.4

5 B 5.37 3.91 0.90 -23.2955 99.4

Ionization energy  is calculated as a difference between the minimum of two-electron energy

functional (trial function (2)) and a minimum of three-electron energy functional (trial function (B)).

Because of consistency of these functionals mentioned above, we have always zero ionization

energy, as soon as the third electron ionizes ( a3 0→ ).

Ionization energy is shown on Fig. 12 together with numerical results of P. Serra (1998) that

are much more accurate than our variational results and can be considered as „exact“.  Our

variational results look qualitatively the same as exact results with slightly underestimation.

Variational ionization energy and its derivatives (fig. 13 - 15) are very similar to the triplet state of

two-electron atoms that was discussed above. One of exponential parameters a1 , a2 , a3  (shown on

Fig. 16) turnes to zero at Z Z= =0 2 , that means that a trial wave function is non square integrable

at Z Z= 0 . Below Z1 1 9884= . , that corresponds to E = −2 8369. , a1 2 1702= . , a2 11784= . , and

a3 0 0215= − . , the minimum of the energy functional disappears (turnes to a complex stationary

point). On Fig. 17, we plot α ( ) ( )
/I

I

Z Z Z
dE dZ

E
= − 0  vs. Z  at Z Z≈ 0 . The limit of this quantity at

Z Z→ 0  is around α = 2 .

Ground state of four-electron atoms



A standard choice of a three-electron Hartree - Fock trial function is a Slater determinant. We

construct a Slater determinant from exponential coordinate functions:
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Finally, we used the choice (B). The reason is consistency of four-electron energy functional with

three-electron energy functional, when the third electron goes to infinity ( a3 0→ ) which happens

when the system ionizes, and also symmetry of the trial function (B) in respect to permutations

a a1 2→←  and a a3 4→← .

Results for Li- ( Z = 3 ), Be ( Z = 4 ), and B+ ( Z = 5) are given in the following table.

Z Trial function a1 a2 a3 a4 Evar % of exact

3 B 3.28 2.06 0.33 0.14 -7.4317

4 A 3.65 3.65 0.53 0.53 -14.5065 99.2

4 B 4.35 2.94 0.53+0.17i 0.53-0.17i -14.5335 99.4

5 B 5.40 3.84 0.81+0.30i 0.81-0.30i -24.1435 99.4

Ionization energy  is calculated as a difference between the minimum of three-electron energy

functional and a minimum of four-electron energy functional (trial function (B)).

Variational ionization energy and its derivatives (fig. 18 - 20) are very similar to the singlet

state of two-electron atoms that was discussed above. Exponential parameters a1 , a2 , a3 , a4  are



shown on Fig. 21. Note that parameters a3 , a4  became complex-conjugate when Z > 3 25. .

However, the wavefunction (B) remains real because it is a symmetric function in respect to

interchange a a3 4→← . Below Z1 2 9343= . , that corresponds to E = −7 0554. , a1 1 0944= . ,

a2 0 6838= . , a3 0 1116= .  and a4 0 0246= . , the minimum of the energy functional disappears (turnes

to a complex stationary point).

Ground state of five-electron atoms

We construct a trial function in the form
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where βααβα  etc. denote determinants with some α  and β  interchanged.

Results for B ( Z = 5) and C+ ( Z = 6 ) are given in the following table.

Z a1 a2 a3 a4 a5 Evar % of exact

5 5.42 3.85 0.72+...i 0.72-...i 1.24 -24.4512 99.5

6 6.45 4.75 0.99+...i 0.99-...i 1.79 -37.1528 99.5

Ionization energy  is calculated as a difference between the minimum of four-electron energy

functional and a minimum of five-electron energy functional.

Variational ionization energy and its derivatives are shown on Fig. 22 - 24. Exponential

parameters a1 , a2 , a3 , a4 , a5  are shown on Fig. 25. Ionization energy is zero at Z0 4 1≈ .  that is

larger than exact critical charge Zc ≤ 4 . Actually, there is a secondary minimum (not shown on Fig.

22 - 24) that becomes a global minimum at Z < 4 1.  and goes to zero at Z → 4  (cf. with similar Fig.

4.1 and 11).

Ground state of six-electron atoms

We construct a trial function in the form



e e e e Y e Y e

e e e e Y e Y e

e e

a r a r a r a r a r a r

a r a r a r a r a r a r

a r a r

− − − − − −

− − − − − −

− −

1 1 2 1 3 1 4 1 5 1 5 1

1 2 2 2 3 2 4 2 5 2 5 2

1 3 2 3

1 1 1 1 1 1

2 2 2 2 2 2

3

1 0 1 1 1 1 1 1

1 0 2 2 1 1 2 2

α β α β θ φ α θ φ α
α β α β θ φ α θ φ α
α β

( ) ( ) ( ) ( ) ( , ) ( ) ( , ) ( )

( ) ( ) ( ) ( ) ( , ) ( ) ( , ) ( )

( )

, ,

, ,

( ) ( ) ( ) ( , ) ( ) ( , ) ( )

( ) ( ) ( ) ( ) ( , ) ( ) ( , ) ( )

( ) ( ) ( )

, ,

, ,

3 3 3 3 3

4 4 4 4 4 4

5 5 5

3 3 4 3 5 3 5 3

1 4 2 4 3 4 4 4 5 4 5 4

1 5 2 5 3 5 4

1 0 3 3 1 1 3 3

1 0 4 4 1 1 4 4

e e Y e Y e

e e e e Y e Y e

e e e e

a r a r a r a r

a r a r a r a r a r a r

a r a r a r a

− − − −

− − − − − −

− − − −

α β θ φ α θ φ α
α β α β θ φ α θ φ α
α β α r a r a r

a r a r a r a r a r a r

Y e Y e

e e e e Y e Y e

5 5 5 5 5

1 6 2 6 3 6 4 6 5 6 5 6

5 5 5

6 6 6 6 6 6
1 0 5 5 1 1 5 5

1 0 6 6 1 1 6 6

β θ φ α θ φ α
α β α β θ φ α θ φ α

βααβαα βαβααα αββααα

( ) ( , ) ( ) ( , ) ( )

( ) ( ) ( ) ( ) ( , ) ( ) ( , ) ( )

,

, ,

, ,

− −

− − − − − −

− + −

where βααβαα  etc. denote determinants with some α  and β  interchanged.

Results for C ( Z = 6 ) and N+ ( Z = 7 ) are given in the following table.

Z a1 a2 a3 a4 a5 a6 Evar % of exact

6 6.47 4.76 0.90+...i 0.90-...i 1.59 1.59 -37.5493 99.6

7 ... ... ...+...i ...-...i ... ... ... 99...

Ionization energy  is calculated as a difference between the minimum of five-electron energy

functional and a minimum of six-electron energy functional.

Variational ionization energy and its derivatives are shown on Fig. 26 - 28. Exponential

parameters a1 , a2 , a3 , a4 , a5 , a6  are shown on Fig. 29. Ionization energy is zero at Z0 51≈ .  that is

larger than exact critical charge Zc ≤ 5. Actually, there is a secondary minimum (not shown on Fig.

26 - 28) that becomes a global minimum at Z < 51.  and goes to zero at Z → 5  (cf. with similar Fig.

4.1,  11, and 22).


