Diamagnetic hydrogen atom at the limit of large field and lar ge dimensionality (or magnetic

guantum number m)

Here we suppose that a magnetic field B and a magnetic quantum number m both tend to

infinity while their ratio tends to a constant. We introduce a small parameter & = and perform

m+a
the expansion of the energy in powers of & assuming that B=03B equalsto a constant. If we choose
the shift parameter a=1/2 then the quantity B coincides with p from a paper of W. Rosner et d.

(1983).
In cylindrical coordinates, the Schrodinger equation takes the form:
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where "= (P*+2°)” 404 the wave function ¥(N) =€™p™W(p.2). Multiplying (1) by 8% we

arrive to the equation
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where E =3%E is scaled energy. In aclassical limit & — 0, the wavefunction Y (p,z) concentrates
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p, =(2/B)¥2, and the energy

tends to ascaled Landau energy E@ =B/ 2.

To calculate corrections to the classica limit, let us introduce displacement coordinate
Xx=(p—-p,)d"% . Using the expansion r™ =[(p, +8"*x)* +2°] ™% =(p, +2°)™"* +0O(8"?) and
keeping terms up to order 8“2 we obtain the uncoupled equations
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The egenvalue of the first equation in (3) equas to the scaled Landau energy,
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E® =82E,_ . :62§(m +2n, +1) =62§(6‘1 —a +2n, +) :g H2n, 4 —a)g 5 and the

eigenvalue of the second equation in (3) equals to the scaled binding energy E, =3%E, = %@
where €@ isthe eigenvalue in the equation
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Note that if the shift parameter a is chosen to be 1/2, then the potentia in Eq. (4) is identicd to

»asymptotic* potential of W. Rosner et a. (1983), and the binding energy equals to their
»asymptotic* energy.



