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The Stark shifts and the widths of the ground and cacited states of 2 hydrogen atom are calculated. Two independent calculation
methods are used: 2 summation of divergent perturbation theory seres and 1/# expansion. The results of the calculations for the

Rydberg { #= 1} states are in agreement with the experiment,

1. Introdection

The Stark effect is one of the best known problems
in quantum mechanics [ 1] but at the same time one
of the most difficult {outside the weak-field region,
see e.g. refs. [2-13]). For a level with parabolic
quantum numbers #,, 75, /1 10 a hydrogen atom, the
perturbation theory (PT) series is
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where [1] gg=— 1, e, =3(n,—m)/n e=—(1/8r7)
X 17t —9m? =3(n;—n)*+19], ..., € and F=n"e
are convenient “reduced” variables,

E.-r,,u;._.m = 2;1 EE{HL::I-mj — E" _ iE"j
E“=H2F{n1'nz"n}‘ anqﬁj {2}

and n=r,+n,+m+1 (m=0) is the principal quan-
tum number ( we use atomic units, i=m.=e=1: the
electric ficld £ is measured in g,=mze’/A*=75.142
X 10° ¥V /cm).

The recent development of new PT methods has
made 1t possible to calculate [2-7] a large number
of PT coefficients €, up to £= 160 in the case of the

' Permanent address: Institute of Theoretical and Experimenial

Physics, Moscow, USSR.

418

ground state [4], k=100 for the states with n=2
[5.6]. see also refs, [2,3,7] (X is the PT order).
Powerful algornithms have been developed for fast
computation of arhitrary order in perturbation series
(P5). However, PS has a zero convergence radius
and the energy F{e) has an cssential singularnity at
e={ (see cq. (8') below). It follows from the
asymptotics of higher orders of PT:

Etnmm o kra*ffﬂ(cﬂ S +) , (3)

where a=1n° B=n+ |n —n:|—| and ¢; are some
calculable constants. Such a sitwation is usually calied
Dyson's phenomenon [§].

For this reason, addition of partial sums of the PS
(1) vields divergent results. The use of higher PT
orders to calculate the shift and width, F=F£.—
/2, of atomic levels in a strong (£~ 1) elcetric field
would be impossible without suitable methods for
summing divergent series ¥'. Using Padé approxi-
mants { PAY, ane can determine E, and /" up to £=0.]
[4]. The complex coordinate method [9] and the
Pade-Borel transformation [ 10] make it possible 10
sum PS highiv accurately, but only the ground state

*' Bemdes, summation of divergen1 PS is of principal 1mpor-
tance because of the abvious analogy with the strong coupling
prabiem in quantum field theory,
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was considered and 0.1 [9,10]. Developments in
lasers and atomic spectroscopy make it worthwhile
to calculate £, and I for intense fields and for highly
excited (Rydberg) states also. The results arc pre-
sented below.

2. Calculation methods

We used Hermite-Padé approximants (HPA) and
1/ expansion. The values of “diagonal™ HPA
fule) =[N, N, N}(¢) are calculated from the equa-
tion P—Qfu+Ri%=0. where P, Q and R are poly-
nomals of ¢ of degree V., whose cocfficients are de-
termimned from PT coefficients ¢, through the
condition

P—DE+RE>=0(e¥*+2), .0, (4)

where £(&£) 1s PS {1). It 18 clear that HPA. in con-
trast with the usnal PA, can have an tmaginarv part
cven when all the coefficrents of the polynomials P,
{?and R are real (which is the case in the Stark-effect
problem). Therefore, HPA gives not only the value
of the Stark shift, but also the width I

The other approach is based on 1/n expansion:

Table |
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E“} E{IJ
=IE“”+ + = + ... {5]
Fi Fl-

(&¢'*? depend on F and quantum numbers #, A, 21},
The first term €'’ corresponds to the r— o0 limit and
can be calcuiated with the help of the WKB approx-
imation, For the |0, 0, n—1 states the first three
coefficienis in the expansion {5) were obtained an-
alvtically while e*' with &> 2 were computed nu-
merically with the help of recurrence relations [12].
For more details about these methods we refer to refs.
[6.12].

On the other hand, for the {#n,, #,. 0% states the
tniegrals entering the Bohr—-Sommerfeld quantiza-
tien rule and corrections ~ A to it can be calculated
analytically, In this case we arrive at the following
equations for determining the energy € and the sep-
aration constants f5; (see appendix):
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(6)

where S+ =1, v,={n+3}/n -o=16{=1VEF

Ye~", i=1 or 2,

Energies and widths of 1he hydregenic states calculated by different metheds. € and £ are in atomic unils: » = {—2E) """ v=nfor a free

atom {e=0),

0.0 7— 1% states

States with ny=rmz={n—=11/2. =0

n F -¢, computalion n £fa.n) Ia v e r compuiation
method method
1 0.1 1 (5484 +i0.01454 HPA 3 1.§x10-* (L1125 4.92402 2.283  HPa
1054836 +10.014538 refs. [9.10] 4.9239 2.22 1 /5
RN
1 05 125 +i0.55 HPA 4.9240 2282 ref [11]
1.246  +i0.559 1/n 11 1O {0-3 0.1464 10.713 283 HPA
“ 3
3005 1224 +i0.317 HPA :E';éf ngﬁ i;fﬂllll
1.22393 +i0.31685 1/# ' < '
. ~5 NE 577 . A
| L0 {248 <1704 Un 15 1.0x 10 01519 14.57 1.35 HP
1.2487  +i1.2936 ref. [13] 14.5766 1338 1/n
o . ' 14.5771 1.338  rel [11]
3 (.0 27801 +i0.83875 1/n
10 1.0 1.2851  +i0.6739 HPA
1.28520 +i0.67388 1 /n
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Az2y=F(}. 4,2, 2),
g{z)=3F(3, % L, 2)+iF(3, 52 2)

and F=,F, i1s the hypergeometric function. In the
limit £—10 we find from (6):

E= - [ +3LF - (17=3k*+ 192} FI+ ..,
Bi=:(1+ky+§[3(1=k*)4+n—*1F
— Lkl —k*+6n—2)F2+... (7)

(k={(n —n)/n. B, is found through the substitu-
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tion k——k&, F— —F), which is consistent with the
PT expansions [1.2] in the weak field region. For an
arbitrary Feqs. (6) can easily be solved numerically.
Since the corrections disregarded in (6) are no larger
than ~z % the system (6) is very accurate for Ryd-
berg states, =1,

Note that the 1/n expansion converges rapidly at
n> 3-10, while HPA have advantages at small values
of #. An tmportant point is that there exists an over-
lap region {in parameters # and F), in which the two
methods agree with each other quite closely {and at
£< 0.1 they agree with the results of other authors

1 2 n= 3 F
n=3
n=10
n =30
n=um

13F T
d
En n-® g
5
"I -
3
n=-¢2
Obece -/ e _ il
n==a0
71 05 10 F
b .

Fig. 1. The Stark shifts in a hydrogen atom {we use reduced variables (2)): {a) for the |0, 0, n—1> states, {b) for |[n—1, 0, Q) states

(&' =0 corresponds to the ronization limit for a free atom ).
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[9-11.13]}. See table 1 where we also compare the
values of v=(—2E,.)~'"? and widths I" obtained by
our computations with the corresponding values from
ref. [11]. The agreement is good enough, which, in
particular, confirms the chosen summation proce-
dure (HPA) of divergent PS for the Stark effect.

3. Results of computation

Fig. 1 shows the rcal part of the energy ¢, =
2ntEimazm) - for two series of states. Note that in
very strong fields the Stark shift of the |0, 0, n—1>
states changes sign.

The width of the levels is conveniently written in
the form

F["I-”}"”{E) _ [Finjngm) (e) exp( wﬂﬁﬂ]nlmj, (8)

where I” corresponds to the sericlassical formula [ 1],
which 15 asymptotically exact in the hmit £-0, and
On mm(€) Includes corrections 1o this limiting case,
For instance,

aln
Friptn—1r_ ”1”3”"'2 g=" f:?i]l'l(—zf?*”}ﬂ):
4e3tn—1)
Fhr-l.U.U}=_Hr;ﬁ_g_lﬂﬁp(—l'izlﬂ'aﬂ}, {SI’]
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20

1.5~

10+~

05

PHYSICS LETTERS A

13 Octaber 1990

At weak fields, only the factor (&), which depends
very sharply on the field ¢ and varies by many orders
of magnitude, is important in (8), Our calculations
show, however, that the range of applicability of eqs.
(87) 1s quite narrow, e<0.1n 3 - see fig. 2 (the be-
haviour of é,,,,.,.(F) for other states j#,rm,m > is sim-
ilar). The factor eXp{ —H0p,,n,, ) 0 eq. {8) would
have to be taken into account for stronger fields, es-
pecially in the case of Rydberg states. Since 6, 0,
the 1onization probability in the region of intense
fields s much smaller than the value that follows
from the semiclassical estimate (8'). So, we have
obtained the Stark shifts and level widths of hydro-
gen states up to F=ne~2. There is no difficulty in
exlending the calculations to greater values of ¥, but
this 15 only of academic interest because the width I~
in ficlds eéxn~* is already comparable with }E.|.
Such wide resonances are difficull Lo separate from

the background due to the contribution of other
states,

4. The classical ionization threshold

It 1s weil known [1] that only the potential
Us()= = B2/2n+m*/8n° — Len has a barrier while

n=10

* ] [
0 02 0.4

!
06 08 10

Fig. 2. The function 4, ea. {8). for |n;, O, 0 states, m=n—1.
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£) is a confining potential for all e>0 {E=r+z,
t=r—z are parabolic coordinates ). The field F=F_,
for which the barrier in U5 (#) disappears, will be re-
ferred to as the classical ionization threshold. When
m=0, the potential U,(x) has a maximum at
no=2(f/F)"* and U,(m) = — 3 (f2F)"/*. The bar-
rier disappears when e=Us(1;), l.e., z.=168,F/¢?
=1, which corresponds precisely to the singular point
of the hypergeometric function in eq. (6).

Assuming in (6) that

]

B L
1+4

ﬁz_Hﬁ

21:1= ﬁ1=

we can reduce (6) to the single equation

277 2n, +1
311: 2”2"]‘] |

BF(1, 1:2: =8) = (9)

where the classical ionization threshold is given by

o 1024 1
ML+ ) s

Eq. (9) was solved numerically and it was found that
F, Increased monotonically with », between 0.1298
(vi=0) to 0.3834 (v =1). The values of F, for some
states with #, > 1, n, and i~ | are given in ref, [17].

(L0)

5. Comparison with experiment

The study of Rydberg states of atoms and mole-
cules has rccently attracted considerable interest.
Resonances 1n the cross sections for photo-ioniza-
tton of atoms 1n the presence of an electric field have
been discovered (see refs. [14,15] and references
therein), Glab et al. {14] and Kolosav [16] estab-
lished a relationship between the resonances in hy-
drogen and the Siark guasistationary states, whose
positions and widths were determined through a no-
merical solution of the Schrddinger equation.

Using the methods deseribed above, we calculated
the complex energies of these states over a broad
range of values of € and #,, n,, 7. As an example,
the Stark resonance energies near £=0 which we cal-
culated are compared in fig, 3 with the experimental
spectrum taken from ref, {14]. We see that the po-
sitions of the maxima correspond to the values €/,

A2
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Fig. 3. Experimental spectrum [ 14] of the photo-1onization of a
hydrogen atom with e=8.0 kV/cm. The results of calculations
for two series of stales are also shown (the vertex of the triangle
denotes £, and its basc represents the width 7). Note that 100
e =9 113x 10 *Ry=00124 V.

Jnl :I :D:}

obtained from eqs. (6} and that the width of the
peaks 1s In qualitative agreement with €. A more
detalled comparison is made in table 2, which con-
tains the resonance enerpies £. (taken with an op-
postte sign) and /2 for the subthreshold (E<0}
resonances *, the values of the variable f=(F-F,)/
F, are also given in table 2. This quantity shows the
proximity of the resonance encrgy E!"v7"27! {0 the
top of the potential barrier U,(#,) and qualitatively
explains the seeming irregularity in the values of res-
onance widths.

*2 Similar resulis were obtained for other data reported in refs.
[13,14]. Table 3 in ref. [17] contains about 50 resonances.
whose positions and widths agree with the theoretical com-
putations within the limits of experimental errors {which i3
1-2 ¢con = for £,).
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Encrgies and halfwidths of the subthreshold Stark resenances in a hydrogen atom. e=16.8 kV/cm, magnetic guaniurn number #r= 0 for
all the stales considered, /= (F— F, )/ F,. For mare details see ref. | 17].

n, My - (em—1) {2 (em=") I
theor, exp. [15] theor. exp. [15]
17 0] JE.1 60).7 2.21 25 010
16 1 106.6 103.8 8,93 0.0 0.29
16 () F23.3 126.5 015 0.14 —-0.12
15 | 167.6 167.9 1.84 2.1 .04
14 2 211.5 2101 5.64 6.6 016
14 1 2353 2381 0.020 .0l6 —( 18
I3 2 2742 275.9 0.27 (.23 — (.08
12 3 313.8 314.8 1.29 1.6 —0.001
12 2 349.8 351.4 1,1 1074 in=-* — .28
Il 4 3522 3514 3.29 30 0.7
11 3 384.4 386.3 1.9 10?2 LA 10-? —0.21
10 4 419.] 419.2 0.025 {3,032 —0. 16
The theoretical predictions of the Stark reso- ] g 2

. . . i 5

nances in a strong electric field are in good agree- %dfﬁf[l ~ GAFRE (dc‘j ({°R )) +]

ment with the experimental data [14,15], including ¥

those in the above-barrier region {as long as the res- =22x(n, +1},

onances remain isolated, see fig. 3). It shows that the 5 172

peaks m pholo-ionization cross sections correspond R—= (ﬁ' _ -+ iE— %e{) } (A1)

to the Stark quasistationary states and, on the other 28 8

hand. demonstrates that summation of divergent PS
In quantum mechanics can give valuable physical in-
formation far beyond the region of weak coupling.
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Appendix

The systematic dertvation of higher orders of the
WKB guantization rule in the case of the Stark effect
in a hydrogen atom was performed by Bekenstein and
Krieger [19]:

and a similar equation for the # variable, in which
t—=—¢ B,- B, and n,—n,.

For m={ states the integrals entering eq. (A.l)
can be expressed through the hypergeometric func
tions. The first term in {A.1) is

XF(=1, 5 2 x,/x2), (A.2)

where C=n°x, x,=(1/2F)[eF (e2+168,F)1/?].
This expression can be simplified considerably by
means of the Kummer guadratic transformation

+ .1_(1_3}1;’2)

F(a,a—ﬁ+1,}3‘,l+(1_3)”2
B 1+(1_z)1ﬂ)‘” (E a+l )
‘( 2 Flyr—3 bz

(in this case =3, f=2, z= —164,F/¢?). Finally,

423



Volume 142, number 9

#Rdé:?”znﬁl{—f}”l
XF(§,4:2; =168, F/e?). (A.3)

The caiculation of the second term in (A.1) is sim-
ilar, but mare cumbersome. As a result, we arrive at

eqs. (6).
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