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The Stark shifts and widths of atomic siates in an intense electric field are caleulated with the help of the | /nr-expansion. A
previous theory is generalized to highly excited states of an arbitrary atom. The scaling relations for near-threshold {£=0) resp-
nances are obtained which are in good agreement with experiment. The modification of the Bohr—Sommerfeld quantization rule

due to the finite barmer penetrability 1$ also considered.

1. Introduction

The energies and widths of Stark resonances in a
hydrogen atom can be calculated by different meth-
ods (see, e.p. refs. [1-4] and references therein).
Using the guantum defect method [3], we peneral-
ize the theory to Ryvdberg (n= 1) states of an ar-
bitrary aiom in a strong electric field £ (up 1o values
of 2~n~* comparable with atomic field at the cor-
responding eleciron orbit), With the help of the
1/n-expansion [1] scaling relations for the near-
threshold resonances have heen obtained, which are
ih good agreement with experimental data for hy-
drogen, sodium and rubidium,

We use atormic units A=m,=¢=1 (unless speci-
fied otherwise); n|, n2; and m are parabolic quantum
nembers (m=z0), n=n,+n,+m+1 is the principal
quanturmn number of the level. Other notations are
the same as 1n the preceding Letter [3].

2. Analytical theory

In calculating the energy of | n,, #;, m ) states with
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nx 1 and n,, m~ 1, we use the WKB quantization
conditions with allowance for the corrections of the
order of #* [ 6], approximate separation of variables
n the region r>r,, and the “hidden™ symmetry of
the Coulomb field [7].

For atoms other than hvdrogen the potential ¥(r)
differs from the Coulomb potential — | /¥ at r<r, *'.
Since Stark shifts of the atomic levels in intense field
¢ considerably exceed the fine structure splitting, a,,
#y and m are good quantum numbers. In the Cou-
lomb field there exasts the well-known “accidental”
degeneracy of states which is described by the hid-
den symmetry group [7] SO(4)=S0(3)®S0(3).
Its generators are the angular momentum L=rxp
and the Runge-Lenz vector d=r/r+ 1 (LXp—px L),
while F ,=4(L*+A4d) are generators of SO(3)
subgroups. Since L =4+ %, the quantum defect in
parabglic basis |m,p.m3 18

=
l:'5'::’;:‘51*’1;!"“?"-]\;"= E;Z (2!+ 1 ){C.g:‘fi—m;!'m}lﬁh {IJ

where F={n—-1)/2, M={(n—n+m)/2,
FA

7 ¢ —mon ATE the Clebsch—-Gordan coefficients for

¥ Here r, is the radius of alomic core, which is assumed to be
small in comparison with the mean radius of the Rydberg states
{ry—-ni,
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the SO(3) group and y; are quantum defects for a
free {2=0) atom. The values of s, are tabulated and
sharply decrease with growing /, so the sum in {1)
actually retains several leading terms *2.

Let B, . denote the separation constanis in the
Schrédinger equation and e=¢"'—ie” and F are the
reduced energy and reduced external field [3]. If
m=0, we can determine ¢, £, and 8, from the
equations

F
Bi(—€)~2f(z)) — Q2 (—e)~*g(z))=v,,

ﬁz{*—f)_”zf[-z}'}‘ ( E]_MEE{EEJ:I":,

Bithr=1, (2)

where z;=(—1)168Fe~* for i=1 or 2, »=
[+ 3{m+1)](1-6/n), d=d(nnym) and the
functions f(z), g(z) are expressed through the hy-
pergeometric function *. In the limit 2—0 the so-
lution of (2) is in agreement with the perturbation
theory up to the term of order ¢ inclusively, Using
eqs. (2) 1t is possible, however, to consider the case
in which the field is strong, ne~1.

At r>» ] 11 1s reasonable to use the 1/n-expansion,

Emnzm = ZHEE {HIHIM}

iE“H_ }:_ (P2 @D +ED 4 p2p @y g

(3)

where p=2n,+m+1 and €'*, F5_ p™ depend on
F. In the himit #—-co system (2) reduces to the
equation

(—eY'P=2F(}, 2, —16Fe?), (4)

whose solution will be denoted as ey=¢€® (F). It is
easy to show that ¢4(F) increases monotonicaily
along with F, crosses the boundary eé=0 at F=

* Asympratically 8{ mynm =1 /5 as n—cc, but at 7= 20-40 they
are not yet small. In a rubidium atom, for example, §(24, 0,
0)=0.633, 4(23, |, 0)=0.491, 4(22, 2, 0)}=0.386, 5(22, 1
1)=0.133,8(23,0,1)=0.092,5(22,0,2) = 0.007 (n=25 for
all these states). Naturaily, =82, #,, m)=0fora hvdrogen
atom.

** We have fli )=2F14, 31 % 2), g(D=4[F (], % 2 oY+

2503 5 11 2)]. At 20 Az)=1+5z+222 4., gl2)
=1+8z+1#5z +.., while at z=1 these functions have
singularities,
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F,=0.3834 and remains real for ail 0< F<oo. The
initial terms of the 1/p-expansion can be expressed
through the function €,(F) and its derivatives, e.g.,

d d
EE1}=(1—2F¥)'&:{+(1“ dF){—E;:I]HE

Using this formula, we find the scaling relations for
the near-threshold resonances. Above the ienization
threshold, £>0,

]

B = o ealle), T = Lo (o)
{3)
where # n =n—4@, A=n+i(m+1)~d and
d T :
Ya(F)=0(F—F, }(f‘d—ﬁ—— )E-:I : (47)

Note that at Fx F,
el F)=ot, f+a, f*+...
Pl E)=b f172+ b, 324 (0)

where f= (F—F_}/F_—0 and the coefficients can be
calculated analytically #5,

Below the threshold (E<0, F<F,) scaling rela-
tions acquire a somewhat differcot form,

1 . .
E{mmm — o LealA%8) +1(Uin, ) %)

—(A/n,Yninie)],
RUF}=[—ed F) P72 (7)

As usual, the valve of ¢ is fixed experimentally and
a sequence of resonances near £=0 is observed [8-
12]. It follows from (5} that the |, n,m1> states with
given Ha, m intersect the zero-field ionization limit
E=0 when

* n, is analogous 1o the effective principal quantum number

n— iy which is vsed for the Rydberg siates in the spherical
basis |#im s .

® From eqs, (4) and (4') one can obtain; o, =p3/27m. .=
(p*/216m) (1 —p27a8), b, =+*/18{3n}¥2 and so on, where
Y=L M3y =%.7538 and F,o=12y/971"=0.3834, Nu-
mencally we have o,=0903, o,=—0067, @;=0.017%
ay=—0.0063, .... Since &, 3 |@,| > as, 1he F-dependence of
€l F) Is nearly Iim:ar aL £~ F_, which is clearly seen in figs. |
and 2. On the other hand, y, has a square root singularity at
F=F_ and y,(F1=0as FakF,.
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n=ke' "t +i{m+1)+d(n,n,m) (8)

where A= (2y/97)/?°=0.787 in atomic units and
k=375 if ¢ is measured in kV/cm.

3. Comparison with experiment

The scaling (5) 1s verified in fip. 1. The experi-
mental data points are; O: the |#,, 0, 0 states of the
hydrogen atom [B] for £=6.5 and 8.0 kV/cm. [O:
the |n,, 0,15 and [#,, |, 0 series in hydrogen [&].
+: the data for Rb, £e=2.189 kV/cm (the four left
points) and also for £=4.335 and 6.416 kV/cm [9].
«:the |y, 0, Q) states for Na, £=2.15 and 4.46 kV/
cm [10,11]. |

Fulfillment of scaling in the subthreshold region is
illustrated in fig. 2. The experimental energies
£imneam taken from refs. [8—11] were recalculated
in the following way:

Enymam =2RELM —y((Fin, ) e)

+ (fd/n, )y m(nde) . {9)

0.3

-0.2

Fig. 1. Scaling (5) for the energies of the above threshold reso-
nances. Solid curve is €,(F), the variables are F—ji%, ¢,—
2ATEMmm) The experimental poims are explained in the text.
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Fig. 2. Scaling (7) for the subthreshold resonances. The data for
hydrogen (open circles) are taken from refs. [8.12].
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Fig. 3. Scaling for the widths of the Stark resonances. The values
of p=2n.+ m+ | are shown at the curves.

According to {7), the points &, _,,,,, for an arbitrary
atom must set onto the universal curve ¢, (F), which
is the case indeed.

With regard to the resonance widths I"tnmer) gt
£20.5 eq. (5) is {ulfilled. See fig. 3, where the
variables

o =1
F=ﬁ4ﬁ, ?mnzn:': %r{m”:m]{ﬂ) {ID)

are used. Notations are: O, @ and A: the |n;, 0, 0>,
|71, 0, 1> and [ny, 1, 0 states in hydrogen at £=6.5
and 3.0 kV/cm [8,12], A: the |n,, #,, 0 states in
Na at e=3.59 kV/cm [10,11].

In all the cases considered the agreement between
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theory and experiment is good. The scaling relations
can be uvsed to identify the quantum numbers (#,,
7., ) of the peaks in photo-lonization cross sec-
tions, as well as to control computations performed
bv more precise numerical methods.

However, there are some deviations from scaling
for "2 at lower values of the field, F<0.4 ({ig.
3). Here the correction to the Behr-Sommerfeld
quantization rule due to the barrier penetration
shouid be taken into account. In the problem at hand,
only the potential

2 2
Eﬁbirlir2 B gﬂ s

()=

has a barrier, while I/, (£) is the confining potential
for 0« F<oo. The Schrédinger equation near the
barrier =4, allows an exact solution 1n parabolic
cylinder functions, which 1s matched with the quas-
iclassical wave function at 5 < n,,,, while at g—co the
solution goes over 1nto an outgoing wave (which
corresponds to a quasistationary state). As a result,
in the second of eqgs. (2) we must make the
substitution

1
p:—ipl—mw(ﬂ]‘ (]l]

where

E”

0015 -

0.01

0.005 |
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pla)= %1n[F(%+ia]{F{%miﬂ)“ +e—24) ]
+a{l—Ina),

)
a=—| (=p2y72an. (12)
m

and n, <n;<n, 1s the subbarmer region. If e-0, the
parameter 4—oc and

(a)= : + i
PANA= S aa 2880a°

+..+liexp(=2ma). (13)

Taking into account an exponentially small imagi-
nary part of ¢(a}, one can obtain from (2} the cor-
rect weak-field behaviour,

[immm e e —rexp{~-2/3n'e), ase—0

A numerical solution of the sysiem (2) with the
substitution (11) gives a correct interpolation be-
tween the weak-field region and the scaling region
FzF, (fig. 4). We will compare the caiculations with
gxperimental data on the Stark resonance widths in
a more detailed paper.

The modification of the Behr-Sommerfeld quan-
tization condition for an arbitrary potential is

0 03 F 035 04

F-ny’ g

Fig. 4. Effect of barrier penetrability on the caleuiation of the level width, & =#* "% {or the |n=1, 0, 0> states, n=20. Curve L
solution of egs. (2) without the function ¢{a), 1.e., #o=4a; in this case ¢ =0 a1 F<F,. Curve Z: selution of {2) with the substitution
{11).
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*

[ (1) dr=pnt4—p(@r/2n1m, n=o,1..., (14)

1|

where @{a) is given in (12),
rl

_lj a2y is2

a= (—p=)'/~dr,

pEZZ{E_;;}— (1’+11]2r'2 .

Note that the function ¢(a) has singularities at the
points

a=a,={n+3)1, (15)

which correspond to the poles of the scattering am-
plitude for a parabolic barrier. If a1, eq. (14} is
reduced to the well-known Gamow formula for the
level width. However, this equation can be applied
also 1 the cases when the level energy £ is close to
the barrier summit, or is above it. It can be checked
by considening some exactly solvable model poten-
tials {see appendix).
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Appendix

Here we consider a model potential

Vir)=—1w{r—RY, O<r<co, (ALY

for which the Schridinger equation with /=0 can be
solved analytically. 1t makes it possible to compare
the exact results with our approximation. The
substitution

xX= (2w) 2=/ (r— R)
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transforms the Schridinger equation inte the stan-
dard formn

d?y

dx? +(p+3—1x"y=0,
where

p=—1i-ia,

Fi

1
H:;J. (__FE}IIE dr= —E;fﬂ}

|

{ri2=R{1F¢'?) are turning points ). The spectrum
of the quasistationary states is defined by the equa-
tion (=0, or

Dy ial=2e =413 =0, (A2}

where s=jwR’=V,/w, Vy=—V(0). Supposing
#>3 1. s> g and using the asympiotics of D,(z}, we
obtain from the exact equation (A.2):

s—aafin(s/fa)+1+21In2]+ip(a)
=(n+3)m, (A.3)

¢(a) 1s defined by eq. (12}. On the other hand, in
this case |§ pdr=1isf{e),

fe)y=(1—¢€)'"?—carth(l—¢)'/?

=l+ielne—(1+In2)e+}e’+.... -0,
=%{E—E)3‘F:+-”, T

and e= — £/, (note that a=us¢).
Thus, the usual Bohr-Sommerfeld quantization
condition gives

sfle)=(n+§)x, (A4)

which corresponds 10 eq. (A.3) in the case e<< |.
However, an additicnal term ig(aq) is present in
(A.3), mm accordance with the substitution {11).

When neglecting the barrier penetration, the re-
gion of the discrete spectrum corresponds to O < e< 1,
The full number of bound states is

Ho=85{R~3+0(s"), (A.5)

as immediately follows from eq. (A.4) at e=0.
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