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Abstract. A correclion to the quasiclassical quantization rules that allows for the
presence of a barrier factor is found. The equation obtained in the process determines
both the position of the quasistationary level E. and the level width . The results
are compared with numerical solutions of the Schrodinger equation and with those
obtained from an exactly solvable model. Finally, a generalization of the Camow
formula for systems with separable variables is derived.

1. Introduction

The Bohr-Sommerfeld gquantization rules determine a discrete energy spectrum {1, 3],
and integrals of the [pdr type are evaluated over the. classically allowed region
zq < = < r; (see figure 1), while the behaviour of the potential outside of this
region is insignificant. (Actually, it is assumed that {/(z) > E as 2 — +00.)

(x>

Figure 1.
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[n many physical problems, however, the potential is in the form of a barrier, as
o result of which the levels are quasistationary (E = E,—il'/2). Since the Gamow
wave function grows exponentially as r — oo, a numerical calculation of the position
of level B and the level's width T poses certain difficulties.

We will consider this problem in the quasiclassical approximaiion, which yields
formulae valid for an arbitrary smooth potential U(z). The regton where these
formulae, derived forn 2» 1, are valid often “extends” to small quantum nurnbers n = 1
(just as in problems referring to the discrete spectrum with physically meaningful
potentials; e. g., see [2, 3])-

A brief discussion of the main results of this work has been published in [4].

——— -

5  Generalization of the Bohr-Sommerfeld quantization rules

Near the top of the barrier, = ., the parabolic approximation holds true:

1/2
o) = (50— ) ¢ = (U(zn) — B)e (1)

where p = (z —z,)/€, and £ = (Afmw)? and w = (—U"(z,)]}/? are the amplitude
and frequency of the zero-point vibrations of the particle about the equilibrium point
(from now on we assume that k = m = 1). In this case the Schrodinger equation has
the exact solution

w(x) = const X D_1_i, (ﬁ’i’f‘ip) (2}

which satisfies Sommerfeld’s radiation condition {the D, (z) are parabolic cylinder

functions [5]). To the left of the barrier (g < 0, [p| > @) this solution is matched with
the quasiclassical solution

I

Ywip () = const X [p(r)]'—lf? sin(ﬂ + E-) g = /pd::. (2

In

As usual, the quantization condition emerges from the requirement that the phases of
functions {2) and (2') coinade (to within n7) in the overlap region ¢ < 1ol € 7 /8p,
which always exisis for large n. Knowing the asymptotic behaviour of D _(z} as z — 00,
we obtain (see also [6, 7))

ry

fp[x)dz = (N + %)r N =n— >ga) (3)

£a

where n =0,1,2,..,

wla) = —%ln{?(% -+ iu) /l‘(% - i.-::) (1 + e‘g”‘)} + a(l — Ina) (3"



Quaniization rules wiih barrier pencirability 17

and
1 E LR s i
= (—p7)"dz (3"}

(the notation is given in figure 1). Parameter a, which for a parabolic barrier is defined
in (1), is written here in a more general form, applicable for an arbitrary potential
that meets the quasiclassical requirements. For quasistationary states this parameter
Is complex-valued, as are the turning points z, ,.
[n the simplest cases, integral (3”) can be evaluated explicitly, so there is no
difficulty in continuing it analytically. For an arbitrary potential U(z) the values of
a for complex-valued £ can be found numerically, which tmgether with equation (3)
determme the spectrum of quasistationaty states,
Let us now analyze-the main equatmns
(a) The case where @ < 1 corresponds to low barner factors “E‘esﬁ"ﬁrg-lﬂ‘rfﬁndmaﬁ

1 7 i
= R — 4
ole) = ot e T T RS @ oo (4)

(the properties of function w(a) have been studied extensively in [8]) and assuming
that the radial momentum (in the spherically symmetric case) is

2
p={2E, —i0/2-UMDY:  UF) =V()+ (" + %) / 2

we find that equation (3) yields

[=T- E}cp( /[p|dr) T:?}p“ldr G

where T 15 the permd of radial oscillations of the particle inside the well (the Gamow
formula for the width of a quasistationary state). Thus, equation (3) leads to
meaningful results not only for small ¢ but also for the opposite case, a > 1. It
15, therefore, reasonable to expect that for intermediate values g == 1 it alsc provides a
correct interpolation for the exact solution. Later on we will see that is is indeed the
case (see sections 3 and 4).

(b) For multidimensional problems with separable variables gy ---2q; (f is the
number of degrees of freedom), the quantizatior conditions are

gt

P; dg-ri == (N,- + -;—) T (6)

-
S ’-...~___‘

9

where N; = n; — 5-p(a;) if tunnelling in coordinate g, is possible { “an open channel”);
ﬂtherwme N; = n; = 0,1,.... Solving this system of equations vields the complex-
valued energies ¥ = F_ — 1F/2 and the separation parameters 8, When the barrier
factor is low, tunnellmg occurs practically in a single coordinate, say, ¢,. (Note that
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the other “decay channels” are either closed or exp(—27a;} K exp(—2ma,;). Systems
satisfying special symmetry conditions may prove to be an exception.) For I’ we then
arvive at the following formula {see appendix A}

I = %exp[—?wa;) (T)
where
(1)
f-1 —1 i
c:{{r(l-{—Z'ﬁfE)} TZZJPFIdQI
=1 '@
!

which is the generalization of the Gamow formula (5) and for f = 1 transforms intc
it. Here the p; are the quasiclassical momenta

p(q) = (20aE - U;(@}"" Uide) = w(a) + Bivil ), (8)

the 3, are the separation parameters (Zleﬂi — constant), and the ¥/ stand for the
averages over the quasiclassical wave function:

(1]

gtV

. v;(a) dyg

T : d _

‘ /:ﬂ;(q} q/ “[) pi(q) ®)
q,

o
4%

with qED*l] the turning points.

[n the particular case of the Stark effect in the hydrogen atom (f = 2),
equation (7) transformsinto a formula that earlier was found in [8] by direct calculation
(considerably more complex) of the flux of particles leaving for infinity.

(¢) The above formulae can be refined by allowing for a term of the order of k°

that is a correction to the ordinary quasiclassical scheme {9, 10]. Then the phase f(r)
in (2') is given by the formula

r

= Jarfp-3(5) -3 k)

Ly

(here p' = dp/dr), while the exact solution {2} yields, for 7= —p 2> la}, the following:

1 " il TE 1 1 7 3 .y _—
8 = —-T7T" — - —_— — — - T — = = " * - IUJ
(7) T3 In . + Z[tp(a) al + 2(;1 4)7: +0(r™%) (10"}

By applving the parabolic approximation (1} for momentum p{r) and evaluating the
integrals in #(r) we see that (10) can be matched with (107). This again brings us to
the quantization condition {3) n which, however, the function ¢ of (3) is replaced
with q:

wala) = wla) ~ E_i_ (11)

¥
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Comparison with (4) shows that what is subtracted from @{a) is the first term of
its asymptotic expansion as @ — oo. As is known {see [2]), the formal parameter
h° in the quasiclassical expansion transforms into 1/n? in the final formmiae. Since
za(a) = O(a™3), the substitution of ¢, for  ensures that the resonan’# energy is
calculated with a relative accuracy of the order of n™?,

The same approach can be used to take into account the higher-order cr.#rections to
the quasiclassical scheme (see [10-12]), but the complexity of the calcul::.ons grows
very rapldly. Apparently, allowing for corrections up to hiK inclusive .eads to a
quantization condition (3) with the function

. wrla) = ¢la) - Z c;a” Bl (119

where
e; = (=LY T 1 =273V B, /25(25 - 1)

are the expansion coefficients of the asymptotic expansion (4}, and ==¢ B,; are

Bernoulli numbers. Since @y (a) = O(E'WH'”) as @ — 00, the accuracy with which
£, is calculated rises to n~?% in the process. (In what follows we do rest consider
approximatlons corresponding to functions g, with X > 2.)

(d) The function ¢{a) has singularities in the upper half-plane at points ¢ = a, =
(k4 1/21, k=0,1,...

w{a) = 11n(a — a,) + O(1) a—a,. (12)

One can easily sce that the singularities correspond to the poles of the scattering

amplitude for a parabolic barrier {/{z) = —1w?z?. Indeed, in this case the amplitude

2
of the forward wave [1, 13],

- —_— e — =

B = {271*)_”22*1“&_'“’{2[‘(% <+ iﬂ) a=—Ffuw, (13)

has simple poles at points a = a,. A pole in the scattering amplitude core=sponds to
a logarithmic singularity in ¢{a), since the latter is directly related to the: scatlering
phase.

The respective wave functions exhibit the following asymptotic behav.our:

Yi(z) ~ =¥ expliwz®/2) ¢ — koo

and are not square-integrable. On the other hand, B and {a) are rezutar at the
murror-symmetric peints @ = aj.:

o(—i(k +1/2)) = iln [(2«)”3(%2*:1)“”2/;:!].

(The amplitude B at the point a = a} cannot have a pole because this wonisc contradict
the hermiticity of the Hamiltonian, that is, there could exist square-intasrable wave
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functions w,(z} ~ 2=+ exp(iwz?/2),  — +oo {k > 0) that would correspond to
complex-valued energies £ = i{k + 1/2)w.) '

(e} If the energy of a level approaches the top of the barrier, the quantization
integral J = f_:n‘ p(z, F) dz has a logarithmic singularity:

1 .
J(ﬂ)=JD+§ﬂlnu—Jla+Jzuz+-+- a — 0. {14)

The coefficient of this singularity is independent of U(z), and for the next coeflicient J,

we can easily obtain a formula (see appendix B). When the level crosses the boundary
E = U_, the following formula holds true:

I' In2
LIRS p— 1 . 1
dE_jdn 2 01103 (13)

which is asymptotically exact {n — oo) for an arbitrary potential. Thus, at £ = U
the resonances do not yet overlap. Hence, in the region of energies £ > U, several

above-the-barrier resonances can be observed although their widths rapidly grow with
E:

r

i

2 -4 (16)
A=l {(Jl + )% + (1) ] b = 0.482

(n = ng corresponds to the energy E = U,,; see equation (B.8}).

(f) Here is a remark concerning the connection between equations {3) and (11)
and the results obtained previously by other researchers. The effect of the barrier
factor on the quasiclassical quantization rules has been studied by Rice and Good [14],
Connor [6}, Drukaryov [7], and Kondratovich and Ostrovski [15]. The expressions for
the corrections to the gquantization rule that were obtained in {7, 14] correspond to
the function @{a) = arg T'(5 + ia) + a(l —ina), which is practically no different from
(3") if @ is real and a >» 1, thal Is, the barrier factor is small. This approximation,
however, determines only the level’s shift but not its width (to obtain (5) one must
allow for Imf{a)). As the level approaches the top of the barrier, |af == 1 and this
approximation loses all meaning. A formula equivalent to (3’) has been obtained by
Connor [8]. Note that in the cited papers no allowance was made for above-the-barrier
resonances, when the parameter a becomes complex-valued, and for correction {11) of
the order of A%.

Quantization rules (3) and (6) can have varicus applications. Let us consider some
examples.

Il
11

t

3. Model with exact solution

Let us consider states with { = 0 in the potential

Vir) = —%wg(r — R)° 0 < r < oo (17)
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Figure 2. The real part of the ns-level energies in terms of the reduced variables
(22). |

Introducing the variable z = (2w)!/2e~*/4(r - R} transforms the Schrédinger equation
to the standard form |

dﬂx 1 1?
E}?+(”+§_Em )wa

with v = —(3 + ia) and @ = —Efw. The spectrum of quasistationary states is
determined from the condition that y is regular at zero, x(0) = 0, which yields

_nlf2 —infd4 y _ . )
D_y_,(=2%"""45) =0 - (18)

where 5 = (2J,)/% = w!?R. Assuraing that n >» 1 and |E| <« V, = —V{0) and
taking into account the asymptotic behaviour of parabolic cylinder functions i3], from
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the exact equation (18) we get

2
Sz—u(lni~+l+ln2)+<,9(u}=27r(n—-%l-)+ (19)

e

On the other hand in this case ry = 0 and

Ly !

[ p(rydr = Joble)

o}

where ¢ = E/V(0), and

$(e) = (1 — e}/? — ctanh™' (1~ )2

_ £+%Ems—(-;-+1n2)s+%52+3—1553++-- as g — 0 (20)
2(1 — 2+ 0((1—-<)%"?) as € — 1.
Hence, the common Bohr-Sommerfeld quantization rule assumes the form
1
jg¢(£)=(ﬂ—-4')ﬂ n=n.+1=12... (21)

which agrees with equation (19) for £ < 1 (highly excited levels). However, (19)
contains an additional term w(a), in full accordance with (3).

If we ignore the barrier factor, the discrete spectrum occupies the interval
0 <c< 1. Putting ¢ = 0 in (21), we find the total nurmber of s-levels in potential
(17): -
52 ]. E
na=—+ - +0(77)
0= 5+ TOLET)
The results of the numerical calculations are depicted In figures 2 and 3.

It is expedient to go over to the scaled variables

1\]'/ 1
o = [52/2?1‘<ﬂ — E)] £, = En/<nu E)u v, = —Ime, (22)

since this makes it possible to depict curves for different ns-levels in a single diagram.

The quantization rule (21) suggests that when a leve! enters the continuous
spectrum, o becomes equal to 1 (provided that n — oo and the barrier factor
is ignored). The quasiclassicai approximation with the barrier factor included has
sufficiently good accuracy even for the ground state, n =.1. A more detailed
understanding of this can be gained from table I, which lists the values of o, and
~,, corresponding to the moment when an ns-level enters.the continuous spectrum.

The above example shows the range of applicability of equation (3}, obtained under
the condition that n > 1 {a common assumption in the WKB method), may extend
to moderate values of quantum numbers.

We have also checked whether the asymptotic formula (15) is valid. The derivative
(dE, /dr) g, is Teplaced with 6E&, = LRe {E,,1(R,) - E._(R))}, where R, is
determined by the condition that Re £ (R,;) = C. The ratio A, = I',/6E, tends to
limit (15) as n — oo, although fairly slowly (for example, A = 0,1084 at n = 100).
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Figure 3. The width of ns-stakes for potential [17). The solid curves represents the

results of calculations using the exact equation (18) and the dashed curve corresponds
to approximation {3}, Variables {22) are used here, too.

Table 1.
: 7
Ly exact WEB B ~n, eXxact S FA
0 0.985025 0. 986768 0.83% 0.103805 1.30% 0.1030
1 0.996810 0.995248 0.16% 3.784(-2) 0.23% 0.1033
2 0.99784R 0.997214  6.3(-4)  2.223(-2) 0.09% 0.1052
3 0.998403 0.998062  3.4{-4)  1.548(-2)  4.8{-d) 0.1059
5 0.9958964 0.998819  1.5(-4)  9.429{-3)  1.8{-4) 0.1063
10  0.8994B5 0.999424  4.2{(-53)  4.607(-3} 4.8(-5) 0.1071
50  0.999902 0.999900  2.0(-6) 8.008(-4} <1073  0.1081

Note: The above figures correspond to the moment when an nas-level enters the

0, and &, is the error of the WKBE

continuous spectrum, that 1s, Re £,

approximation {19). The quantity inside the pareniheses stands for the order of

the respective figure, {n) = 10",

4, The Stark effect in a strong field

We will now use the quantization rule (3) to calculate the Stark effect in a strong field.
{See also the papers [16, 17] and the citaticns given there.) The energy £™:"27(£) can
be close to the top of the barrier or even exceed it (sub-barrier and above-the-barrier
resonances, respectively).
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Among all the sublevels |n nym) with a given n of the greatest, interest (from the
experimental viewpoint) are, apparentty, the |n—1, 0, 0} states and the adjacent ones
(in quantum number values} as being the most stable. This can easily be seen by
observing the following asymptotic formula (& — @) [1]:

[(rinam)(£) » comst x 73T exp(—2/3nE).

It is these states that manifest themselves (see [16, 18]) as peaks in the atomnic
photoionization cross sections near £ = 0.

For states with n 5> 1 and m = 1, the quantization conditions in the hydrogen
atom assume the form

.5;(-5)4!2)’(3;') + ("l)i 'S_i‘g‘(“E)_m [ﬂ'(zi) — mzh(zi)] = ¥y

. 51+J31;:l

(23)
where z; = (—1)'163;F¢™? (i = L or 2),

m+1 m+ 1 1
vy = (”1 + )/n Vo = (ﬂ.2 + 5= zrtp(ﬂ)) /n (24)

n(_EjS;’B \ RF? i )
= —gpp U - n) Y o F(3/4,5/4;1:1 = ) + O(s™).  (25)

ana

Here we use atomic units, A = m, = e = 1, and the reduced variables (1t = m/n)
£ = 2n2 g™ = ¢ e F=n'€ (26)

where n,, n,, and m are the parabolic quantum numbers [1] (m > 0}, n =
n, + n, + m + 1 is the principai quantum number, £ the strength of the constant
electric field in units of £,, = m2eSh™* = 5.142 x 10° V/em, §; are the separation
parameters, and f, g, and h are expressed in terms of hypergeometric functions as
follows:

flzy = F(1/4,3/4;2; z)
g{z) = %F(S}ﬁi,ﬁfﬂl;?;z}—l— %F{W‘ijﬁli 1;2)
h(z) = F(S,’-ﬂi,ﬁ/ﬁl,ﬂ,z}

_ Note that in (23) the correction term that allows for the barrier factor is present

" only in the second equation, 7 = 2, because an electron tunnels along the coordinate
n = r— z and the effective potential U,(£), § = r+z, is always of a confining type [1].
When these equations are sojved numerically, either the terms of the order of
F/8n® must be discarded (the 1 /n-approximation) or the system must be solved in
complete form (the 1/n-approximation). We have calculated the values of E_and [
in the hydrogen atom for different states |n;n,m} using equations (23)-(25) as well
as an independent method, the summing of divergent series of ordinary perturbation
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Tabie 2. Stark-resonance calculations for the hydrogen atom performed by various

methods.

1, ne,m) |2,2,0) 15,5,0) 17, 7,0%

£ 1.8{—4) 1.0{=5) 3.0{—6)

F 0.1125 0.1464 0.1519

Method i r L/ I " "

1/n 492385  2.22(~6)  10.7128  2.82(-8) 14.5767  1.347({—6)
1/n? 4.92406  2.18(—6)  10.7127 2.80{-6) 14.5766  1.338(-6)
PHA 4.92402  2.283(—6) 10.7T13  2.83(—§) 14.577  1.35(—86)
[19) 4.9240  2.282(-6) 10.688  2.815{(—8) 14.5771 1.338(-8)

Note: Here ny = nz = (n—1}/2, and the values of £, v, and " are expressed in terms
of atomic units.

theory by the Padé-Hermite Approximation {PHA) scherne. Here we list only some
of the results cbtained; the reader interested in technical details can refer to [17].

We start with the case of moderate fields, 7 < 0.2. For the hydrogen atom, the
numerical calculations of positions and widths of resonances have been calculated by
Damburg and Kolosov [19). We calculated v = (—2E_)7Y? and T both in the 1/n-
and 1/n°-approximations in equations (23) and in the PHA scheme. The results for
states with n; = n, = (n — 1)/2 are listed in table 2 (note that ¥ = n = 1,2,... in
the case of unshifted Coulomb levels). The results of our calculations agree well with
each other and with the result obtained in [19].

In the case of strong fields let us first consider the positions of the Stark resonances
Iny,0,0). Table 3 lists the values of ¢/, = —2n? Re E(*=309) for p = n, + 1 = 20
(similar results have been obtained for n = 50). Clearly, the barrier factor has little
effect on the position of resonance E_ (compare lines (a) and (b) for a single value of
F, although the effect grows secmewhat with field strength.

Table 3. The energy of the |19,0,0} state int electric field £.

: Method
F=nlg 1/n 1/n? PHA
0.10 (a) 0,72994 0.73000  0.7300
0.20 {a) 048280 048309  0.4831
(b} 0.48301 0.48309 |
0.30 (&) 0.2548G  0.25696  0.256
(b) (.2561%  0.25683
$.35 . 4{b)--  0.14%90 0.1438 0.149
.40 (a)  0.0432 0.0425 0.042
| (b) 0.0421 . 0.413
0.45 (a) —0.0643 —0.0652 —0.065
0.50 (a) -—0.1716 -0.1727 —0.173
0.80 (a) —0.3842  -D.3855 —0.386
1.00 (a) —1.1896 —1.1907 —1.19

Note: The energies —sf

-2n? Re E(#71.9.0) are listed as multiplied by —1.
Notation: {a) calculations using equation {23} without barrier factor, that is,
w(a) = 0, and (b}, with barrier [actor.

The corresponding results for 7, = n?I{*~19.9 are shown in figure 4. Clearly, the
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barrier-factor correction to the level width is essential in the region where F < Fj, but
as the field strength grows, the role of this correction diminishes. {(Here Fjy corresponds
to the case where £ = 0, that is, the level crosses the ionization limit £ = 0. For the
119,0, 0} state we have Fjy &= 0.42.) For » > 20 one can hmit oneself to the solution
of equations (23) in the 1/n-approximation, and in the majority of cases the accuracy
proves sufficient for comparison with experimental data.

3
]fHHlﬂ

14

10

T L T T 1 ]

.28 0.30 0.32 0.34 .36 0.38 0.40

Figure 4. The effect of the barrier factor on the width of the ]19,0,0) state, Curve
{ corresponds to the 1/n-approximation without barrier factor, and curves 2 and J
to the 1/n- and 1/n?- approximation with barrier factor.

In figure 5 the calculated values of the Stark-resonance energles are compared
with the experimental data on the hydrogen-atom photoicnization spectrum taken
from [20]. Cleatly, the positions of the peaks correspond to &, while the peak widths
agree qualitatively with the values of £l for Stark resonances (other examples of this
kind are discussed in [16, 18]). Level widths grow rapidly when E > 0, even for
|In — 1,0, 0) states, which have the lowest lonization probability.

Thus, the use of quasiclassical quantization cond:tions that allow for barrier
penetrability makes it possible to explain quantitatively the hydrogen-atom
photoionization specttum both in the sub-barrier region and above the barrier.

The generalization of the above theory to highly excited states of other atoms can
be found in [18, 17}, where, for one thing, scaling relations for near-threshold Stark
resonances are established.

5. Conclusion

The quantization conditions {3) may be generalized to the relativistic case and applied
to the Dirac equation. This, for one thing, would simplify the calculation of the
positions and widths of positron resonances, corresponding to states that have dived
into the lower continuum. Basically, with exponential accuracy, the formulae of the
quasiclassical approximation for scalar and spinor particles coincide, but for thorough
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{mnuguﬂ rﬂﬂ,ml l
i

! "l (12.1) l

{

L T
20 21 22 23 24 25 _
f\ j\ /\/\ .09)

'nF—n' 19 20 2t 23
. 1 L /\ /\/\/\/\( 17,10
-100 0 100 Ecm-

Figure 5. The experimental hydrogen-atom photolonization spectrum at £ =
8.0kV /cm. The results of our caleulations for the [n1.0,0} and [ny,1,0) states are
also shown. The top vertex of 2 triangle indicates the resonance energy Er and the
length of the base is equal to width I'.

calculations of the pre-exponential factor certain difficulties emerge {see [21] for the
case of fermions). We hope to return to this question in the future,
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Appendix A. Generalization of the Gamow formula to the case of several
degrees of freedom |

We assurne that the guasiclassical momenta p; (i = 1,2,..., f) can be represented in
form (8). This is not the most general case of variable separation, but many problems
interesting from the standpoint of physics belong to this case. For instance, the
Schrodinger equation for the case of the Stark effect in the hydrogen atom separates
in the parabolic coordinates £ = r+ 2z, 7= r — z, and » (0 < » < 27), with (see [1})

| 8, 1
Ui (€) = o 3 "

3. *J*‘ﬂ.E 1 -
(o) = ~52 + 23 = 26

(Here 8; + 8, =1, v; 4{q) = —1/2¢, and @ = 1/4.) Electron tunnelling proceeds along
coordinate 77, and U/, (£) is a confining potential for all £ > 0.
Another example is the nonrelaiivistic problemn of two centires. Here

3, 1
v {§) = ”31 — va(m) = 5 g oy = 5}22 3 +8,=0 (A.2)
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where £ = (r; +7,)/R and n = (r; — r;)}/ R, and R is the distance between the fixed
centres (nuclei).
Putting £ = E_ —iI'/2 and 3; = §; +15] 1n (8) (both T and 3’ are exponentially

small}, we arrive at the following equations:

!
-r:rI"+ﬂ”_--0 (1<i<f-1 D B =0 (A.3)
-

where notation (9) has been employed. At j = f one must ailow for function w(a) on
the right-hand side, which yields

f=1
&FT(I + Z F}'/ﬁ) = exp{~2ma;). (A.4)
: =1
'This vields
3" = —al /2v; i=1,2,...,f-1
{A.5)

= -—LTFZ ’L?)_

=1

and for I we get formula (7).

As an illustration let us take the Stark effect.  Performing the scaling
transformation & = n?zr, 7 = n’y, we find that
1
pe= ooki(e) = 5ok(®)
- A8
4}31 ) pg 1/2 ( )
k1,2(9)= eF Fg+ — - =
q g
where i = m/n and the reduced variables (26) are employed. Whence,
4,7,
o=
01T+ @27
" (A.T)
d |
T =2 = 41131'2
Py
o
and equation (T) yields
= . exp(—2wa) (A.8)

where
71 F1
[ [
{rlz TI:
; qkt('?) kl(q)
1) o

Lo : % 5 3

n{—e)?? }' du 1 " 3 Y peF
= 1 — — —_ P ]
a S y 4zzu+ u u ¢ —ep

Pormula {A.8) was obtained earlier in {16] by an independent method without using
equation {7).

iy
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Appendix B

Let us consider the quantization condition (3} in the energy range near the barrier’s
top (a = (U, — £)/w — 0). If we introduce the notation

LA |

J(a) = fp{::,E)dJ: (B.1)

I'p

we can show that expansion (14) is valid, with

I

1 .
JE,:/;_:}dm J| = Eanﬂ-FI (Bd?)
! w(z. —T)21 [ |
I = —[1-1-111 24:(1:”1 Iﬂ} } +/d::(i-;~ : (B.3)
2 Ja ) £, — 7
To

and p = p(z, £ = U,) and T; are the quasiclassical momentum and turning points at
E = U, (Ty = 7, see figure 1). Since p(z) =wlz —z |+ --- as £ — z_, the poles
of the integrand cancel out and the integral is always convergent.

‘To prove this we note that

dJ 1 , t2
T —EuT W = [__U ’(ﬂ:m]] (B.4)

with the oscillation period 7" of the particle diverging 'lu:r:agarithmically as a — 0.
Isolating the singular part of the integral, we get

ET“w'lln E':"—I—fdr[ !

m I m_I)

with z —~ 2, =w 12U, - E)]Y?+ ... = (2a/w)/? 4 . ... Whence,

1 |
wl=In=4¢y -0 —Cot® -
a 0O (B.5)

co=2/; =1 ¢ =(k+1)J,, for k>1

and, allowing for equation (B.4), we arrive at equations (14) and (B.2}. If we ignore
the barrier factor, the number of bound states is

1 1

1 O (B.6)

(for Jy 3> 1). Equation (3) assumes the form ¢{a} + alne ~ 2Ia = 27(n — ny). Using
the expansion

;(ﬂ,):;—]nﬂ—ﬂlna—!—(1—21n‘2-—-C—i%—>a+0{a2] (B.7T)
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with la} <« 1 and C = 0.5772... the Euler constant, we see that terms propertional
to alna cancel out and the equation assumes the form

(f\ + i%)a + Ha*) = 27(ng — n) + i_InTQ (B.8)
where A = J,+ 8, with § = 26+ 1 = C +2in2 = 1.964. Assuming here that
E = E, ~il/2, at E, = 0 we arrive at equations (15) and (16). Note that £, equals
U_ not at n = n, (as was the case when we ignored the barrier factor) but at a
somewhat greater value n = ng + In2/8A {however, this correction is small).

Note that both J, and ¢, in equations (14) and (B.5) are anomalously large since
they contain In A, while the subsequent factors J; rapidly decrease as k grows. This
is easily seen if we turn to potential (17) (see equation (B.10)).

Let us illustrate these formulae by the following examples.

(a) For the parabolic barrier {17) we have

Vy, 1 1

:—-—:—”fj‘! = -
I - 2..;;13 I 2—1—1[12

where ¥, = —V'(0) 1s the depth of the notential well at zero. (In the case at hand the

characteristic points are rg = 0, 7y 5 = R{1 F /%), and r, = R. Note that In¢ is
contained only in the second term of expansion (20), which is followed by a series of
integral powers of £.) The integrals J and T can be calculated analylically:

J(a) = J,é(¢) T = 2w~ tanh™ (1 - )'/? (B.9)
where ¢ = —E/V,, and ¢(¢) has been defined in (20). As ¢ — 0, that is, for levels
close to the top of the barrier, we arrive at expansion {14) in which

1

=g Ji~" for n>2 (B.10)

i

Jo=glndy+ 1193 J

where the .an are the expansion ccefficients in (20) when £ — 0.
(b) Let us consider the s-levels in the potential

Viry=—(r~t =&r (B.11)
(the spherically symmetric model of the Stark efiect). Here Vi, = —2(¢CEVE r, =

(CK(‘:)”E, ryg = ?‘m[E:F(EE—Hl)uE],w — 21;2{:—13453341 and ﬁ(r) — wrm(p“lﬁ—p”?),
with e = E/V_ and p = rfr,, where
< 1
Jy = -g-wrfn = %72 371 ((3{5)”4 I = 5(1:1 24 — 3).
(¢) Generalizing Lthe above examples, we put p = wr (p"" 1~ p*), 0 <@ < L.
From (B.2) we find that J; = wry, /o{a + 1) and

1 1.193 if e =1
I:3[1+in2&(u+l)]—c—1ﬁ(?—&): 0.089 if = 1/2
~ ina+0.193 fa—0

(the previous cases are obtained if we put @ = 1 and a = 1/2). Thus, the values
of T are of the order of unity (except for the case when o — 0, which corresponds
to “falling to the centre” {1]) and J; contains a large logarithm. As equation (B.10)
implies, the subsequent coefficients J,, fall off rapidly with increasing 7. In view of
this we can keep only the three first terms in the expansicn.

We note in conclusion that the coelficients of the leading singularity in J(a) and
T are independent of the shape of the potential.
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