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The modification of the Bohr-Sommerfeld quantization rules, which is due to the barrier penetrabitity. is found. The equation
ablained is valid for an arbitrary analytical potential £7(3), obeving 1he quasiclassical conditions. It determines both the position
£_and the width I ol the guasistationary state. A generalization of 1he Gamow formula for moliidimensional svslems with sepa-
rable coordinales 15 derived. A comparison with exactly solvable models as well as with numerical solutions of the Schrédimeger

eguation for the Stark problem is performed.

1. Introduction

The Bohr-Sommerfeld quantization rules detler-
mine the discreie energy spectrum (see. e.g., refs.
[1.2]). in many physical problems, however, the
potentuial has a barrier which gives risc 1o quasista-
ticnary states, insicad of discrete levels. The calcu-
lation of the resonance energy E, and its width I is
an actual problem for atomic and nuclear physics.
scattering theory, etc.

We will consider this probiem in the quasiclassical
approximation which vields formulae convenient for
calculations and are valid for an arbitrary smooth
potential L{x), These formulae derived for s |
are often valid up to small quantum numbers, 7~ 1.

2. Generalization of quantization rules

We use the parabolic approximation near the bar-
rier summit, xX=.x,,.
pPxy=Gp-a)’”, a=(U.—-E)/o, (1)

where p=10"""{x—ux,), @=[-U"(x)]""? and
fi=m= 1, The Schrédinger equation in this case has
an cxact solution,

wix})=const XD_ 240 (pexp(—3in)),

which corresponds to a quasistationary state {out-
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going wave at v--cc ). If this funciion is maiched at
£ -0 with the semiclassical wave function, we obtain
the following quantization condition ',

L] |
-~

J PE)dy=(N+3m, N=n-— %I: pfa). {2a)

-

L]

where n=0. 1. 2 ...

wun:-im( I{3+ia) )

21 Fii—ia)[14exp{ —2nw)]
+a{l—Ina}. (2b)
] f g
='_J(—pﬂ“*dr (3)
T .

(x) < x=x»1s the subbarier region). The paramecter
a which for a parabolic barrier is defined in (1), is
wrntten here in a more general form applicable for
any potential. If the integral (3) can be cvaluated
exphicitly, its analytical continuation is of no diffi-
culty. For an arbitrary potental () the values of
¢ for the complex cnergy £ can be found numeri-
cally, which together with eq. (2a) determine the
spectrum of quasisiationary siates.

*\ See ref. [3]. A formula equivalent 10 eq. {1) has been ob-
tamed by Conner {4]. However, in ref. {4] the attention was
restnicled to the case of a sharp resonance (5, < £, ) and the
region £ U, was nol considered.
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There are also equations of the type of (2a) for
multidimensional problems with separable variables
4, 42, .- gy (f15 the number of degrees of freedom ):

gt

J b dc},:{f\r’,-l-%}ﬂ, i=1,2,...f1, (4)
qu!:UJ
Here g;*'" are the turning points limiting the clas-

sically allowed region along the coordinate ¢, p, is
the quasiclassical momentum, N,=n,— (1/2m)p/a,
if tunneling along g, is possible; otherwise, &, = 20 and
Ne=m=0.1. 2, ... is integer. The solution of egs. (4)
determines the resonance energy E=FE, — }iI"and the
separation constants §, which are alse complex.

3. Consequences of the basic equations

Let us consider some consequences of the basic
equations {2) and (4).

{a) Since
I 7 .
pla)= 54z + 33804° + ..o Fsrexp{ —2na) .
d—+ 0 (5)
1f we set

p(ry=i2[E, —LNlr—Uiryi ',

we ind from {2a) the well-known Gamow formula
[3] for the width of the quasistationary state:

1

; 7 " dr
F=_ N S NS PRV :?’J _ar
Tﬁexp( J [—=p{r}] df)a T s

{0)

(£ is the period or radial oscillations of a particle,
Fo=r="r h

(b} If the barrier penetrability is exponentially
small. tunneling occurs mainty along a single coor-
dinate, say g, (if exp{ —2ma;) = expl —2na,), 1<
{=f—1). Then one can obtain from eqs. (4) a gen-
cralizanion of the Gamow formula:

1 X1}

F=cT 7' exp(—-2nq,) , (7a)
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which differs from eq. (6) by the precxponential fac.
tor ¢. Here ¥

pla)=2[aE—u(q)- v g}]}'"*,

i B =const., (7h)

r=1
where the f; arc the separation constants, and we de-
note hy £, the mean value of v,(g) over the guasi-
classical wave function,

.:,r':” qr_.[”

i ; — 1
. v (g) ( " dg )
o J pa) 1 J 2.(q) ‘)

m
o101 g

In the above equations u,{g; Y+ B..{q,) is the poten-
tial for the coordinate ¢, so that the action

!
SZ_ZJ piq.) dg,
=

and the value of & is determined in the process of
separation of variables (if f=1. then o¢=c=1 and
cq. (7a} reduces to {6)). The explicit form of the
functions «,, 1, depends on the problem considered.
For 1nstance, for the Siark probiem in hydrogen we
have: /=2, a=1% §,+4.=1.

wig)=g(m g +(=1y""é&q],
l'r{‘:lr.":': —1 fll?—"'-?. 1

where £ 15 the electric field. » is the magnetic quan-
tum number, =1 or 2, ¢. =& gy=1 (& n are para-
boiic coordinates [1]) and fi=e=m,=1. Contrary
to value of «, the values of the separation canstants
f. can be determined only together with the energy
Fil

(c) Let d4,=1,/AE,, where AF, (the spacing) is
the distance between neighbouring rresonances. In
the subbarrier region A, 2= (2n) ' exp( —2na,. ) and
thus the resonances are isolated at g, = |. When the
level (n=n,) crosses the boundary Re £E=1/,, the
following equation holds,

** Eq. {7b) does not define the most general case of separation
of vanables in the Schridinger equation, but many important
physical problems belong to it (e.g., a bydrogen atom in a uni-
torm electric field &£, the problem of two Coulomb centres.
elc. [1]7.
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tn 2 , 5

d,.,=§(l+ﬁ|KL +...) {8)
(L=logn,+450= 1 k,=3.32), which 15 asymp-
otically exact (n—oc) for an arbitrary potential [6].
S50. at £= L/, the resonances do not averlap yet, and
a few resonances can be observed in the above-bar-
rier region **

Egs. {2a), (4) and (7a) may have various phvs-
ical apphecations. We shall discuss here only a few
examples.

4. Exactly solvable modcls

{a) A parabolic barrier: /=0,

£

Fir)=—sw (r—Ry = — TE

(1—x)7, (9)
where t{xy=(1 —x). x=r/Rand y=w"R" is a di-
mensignless coupling constant. The boundary con-
ditions for the wave function of the quasistationary
state are »{0}=0 and

X{’.}_".—Ll Fr=ia] Ekp[%imrl]

al r—ac {the Sommerfeld radiation condition ), Fi-
nally. the energy spectrum 15 delermined from the
cguation

" However. their widths quickly grow when the encrgy £, in-
creases, B =0, )

Tablc 1
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D=2 exp(—gim)g'*)=0,
p= Lt +iE/w (10)

(a=—£/w). where D,(z) 1s the parabolic cylinder
function. Eq. (2a) in the case of #s levels can be
wrillen as

g —alin{g/a>Y+1+1n2]+e(a)
=2r({n-3), (11)

where n=n.+1=1, 2, ...

These equations were solved numericallv. Denote
by g, the value of the coupling g a1 which Re £, =0,
The ratios g,/g, and £,/g, (where g,(ns)=
[2m{n—1)]" follows from the Bohr—Sommerfeld
quantization condition and g, follows fromeq. (11)}
arc given 1n table |. Table 1 contains also the “‘re-
duced widths™ y,=17,/2{rn—1)w and the quanitities
Mo =7/ 7 — | which characterize the accuracy of eq.
(11} for the level widihs. The quasiclassical ap-
proximation has a high accuracy in this case. Npte
that ¢q. (11}, which was obtained assuming »n = 1.
remains valid also for small quantum numbers *.
Inclusion of the barrier penetrability correction ¢f{a)
aliows onc to calculate the wadths [, and consider-
ably improves the accuracy of the calculation of g,
(at nz2).

The validity of the asvmpiotic relation (&) was also

" Just as in problems relferming to the discrete energy spectrum
with physically meaningful potentials [ 7].

a8 Bal 2 Ve and y All numbers correspond 10 the moment when the »s level enters the continwous specirue, that 15, Re £ =0, =0.

He=n=1I Eeif Bn Zeld Bn . e

() 1.0201 50 09672149 G.1038047 1.299¢ — 2}

1 1.012862 0.993747 78T~ 2) 2316 =3}

2 1.008655 0.997442 2.3234(-2) E.B&51 —4)

3 1.0(6416 (.998636 1.53484(=2) 4.579( -4}

& 10015038 0.999]151 LETTH =2) 2.760f - 43

5 1.004153 0.999421 3.4392( —3) 1.833( —4)

10 1.002142 0.999335% 4.6068{ —3) 4 890( —5)

20 1001049 0.999956 2. 1848( —3) 1.185{~5}
a0 1.00068 1 0.999%30 1.4032{ —3) 5.14( —6)
40 1000300 0,99992% 1.O0235{ =3} 283(=06)
50 1.000393 (.9999624 8.0092{ —4) 1L78(=6)
100 1.000185 0. 9900909 | 3.7374( =4) 4.19( =7}
200 1000087 0.994949995 1.7462{ — 4} Q.B85(—38)
1000 1000015 [ f 3.0166{ ~5) 342(=9)
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checked and completely confirmed.
(b) In the case of potential

Fir)=—a? 2 —1w?r? (12)

an exact solution can be obtained for an arbitrary
angular momentum /,

Xe{r)=const Xr=12W,_ { —lig?y (13)
where k=1F/w, u=lig,
g=la?=(l+7)*]'72

and W,,(z) is the Whittaker function. When
&> {+ 3, the effective potential L'{r} which includes
the centrifugal energy has a barrier and thus the
quasistationary states exist. Here we discuss this case.

If a>/+1, the condition x(0)=0 is fulfilled for
any energy £ and does not define the gnergy spec-
trum. As for other problems with “collapse to the
centre”™ [8—10], to obtain the quantization rule we
impose the orthogonality condition of wave furnc-
tions corresponding to energy £, and 10 some fixed
energy £,. It can be easily shown that the integral en-
tering the orthogonality conditien is determined by
the behaviour of the Whittaker function in eq. (13)
at r—0. It leads to the equation

Q{"E.rr*g]_Q{ELHgJ:_”H;gﬂ {14}

which determines the energy spectrum. Here

| 1 F(%+ig(f+1]})

E,g = —1 — - . 15
8= “( r+ige) )
£—= E_ Llrm L-'_ — lf}m (= E.r:.].__jE- = ¢
- zb.rm! m Ia - - ti? =5¢.

(e} Similar results were oblained for the pelential
Flr)=—a/2F +3{ (a>{+L >0}, (16}

for which the exact solution of the Schridinger equa-
tion is also expressed in terms of the Whittaker
function.

Let us briefly discuss the quantum correclion to
the Gamow formula. If g |, one can use in eqs.
(14) and (15} the asymplotic expansion for
INff{z+1)] as z—co. It gives, for both potentials
{12} and (16), that

F=T""exp{—2na) [l+g7 D)+ O[T,
(17)
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where

1+ 2¢
24&3(I+E)3In(1+t—"]

¢"(E]:

for the potential (12), D<e<oo;

(1 —e)¥?
12e* [arth(1—€)'7>— {1 _¢)"/7]

for {16), e=(Un—E)/U, (D<e<|). Since P-
[eIn{1/e)]~" at €0, the Gamow formula begins
1o lose validity near the barrier summit. The corre-
sponding energy region is, however, rather narrow
due to the condition g>» 1. and also because the
functions ®{e) are numerically small at e~ 1,

@{E]:-—

5. The Stark effect for a hydrogen atom

Application of the Bohr-Sommerfeld conditions
leads to a system of two transcendenta] equations {see
€q. (0) inref. [11]}. the solulion of which involves
either dropping the terms proportional to F/8n~ or
solving them in their entirety (the | /5 and 1/x° ap-
proximations, respectively). Here we shall present
only a tew results of the calculations *3,

Table 2 contains the values of the reduced energy,
taken with opposite sign, B.B.. —€,=—=2p=Flmrzml
The values of —e;, obtained by the |/rmand 1/n*
approximations, as well as the results of the sum-
mation of perturbation series with the help of the
HPA are presented “®. The influence of the barrier
penetrability on the resonance €nergy £, 1s rather
small for the same F {sce 1able 2}, though it grows
¢ some degree with increasing £,

The corresponding results for the width (e =
peltmmenly gre given in fig. i. In this case the barrier

" See also refs. [11-13] and references therem. In this section
WC US€ alomic units, F=pis, e=2n"({E =4I (£=1 a.u.
COmTesponds 10 5. 142 10 V/iem ), n=n, + a-+ |m| + 1. i, Ha,
A are parabolic quantum numhbers,

Nowadays there exist precise numerical calculations of the
Stark resonance energies £ and their widths /™ performed by
different numerical methods, sce e.g refs, [L1-15] and refer-
ences therewn, We used the t/nand (/n? approximalions, as
well as summation of divergent perturbation serics {in powers
of £) by means of Hermite~Pade approxirnants { HPA ). For
details of these calculations see refx. [11.13].

#i
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Table 2
The reduced energies for the (#—-1, 0, 0} Stark resonances, with ¢{a} =0 and with barrier penetrability included.,
F=ni48 1/n 1/n? HPA
wi{a)l=0 with ¢(a) w{a)=0 with g{a}
n=20 0.10Q 0.72994 0.730G00 0.7300
0.20 0.48280 0.4830H 0.43 309 0.48309 0.483 1
0.25 0 36628 0.36677 366592 0.36695 0.367
0.30 (.254389 {L25619 0.25606 (.25663 0.256
.35 01502 {1. 1490 (11498 01488 0,149
(.40 0.0432 0.0421 (1.0425 0.0413 0.042
0.d5 — {10643 —0.0652 ~ (.06 5
(1,30 —{0.1716 -0.1727 =173
(.60 —0).3842 — (3855 —{0.386
070 —{.5923 —[1.5934 —0.5%6
1.00 —1.1K94 - 1. 1907 —1.19
7 =30 (.20 0.46304 0.46307 0.46309 {46309 0463
.30 0.22169 0.22186 0.22192 0.22193 —~
0.35 0. 1079 01077 0, 1083 0.107§ -

G007 -

e

&2 | fo 03 ' a4 F

Fig. 1. The etfect of barrier penetrability on the calculation of the
width of the (9, 0, 0) stale. {a) Calculation with the harrier pen-
etrablity neglected, t.e. (@) =0; (b} the same wilh the function
@(a) included; (¢} HPA method: {d) improved WKEB approxi-
maiion, seeeq. (18],

penetrability correction 1s very essential at F<0.3,
but with the further increase of F its rale diminishes.
Al nz 20, 1n most cases one can resirict oneself to
the 1 /»n approximation.

The quasiclassical approximation can be Im-
proved so that at -0 the level widths would co-
incide with their exact asymptotics [1,14]. For this

purpose it 15 sufficient to introduce a correction to
the parameter a {3): a—a— Aaq,

Ad=o(m)+oa{H.+m), (18)

which depends on quantum numbers of the state. but
not on the value of £. Here

a(x)= —= o(—i(x+1))=0.0115,  x=0.
21

=(48nx)"", x=»1,
(19}

where the function ¢ 1s defined in (2h). It can be
seen from fig. |, that with the barrier penctrability
correction included, the quantization rules not only
ensure the correct asymptotical behaviour of I'(F)
at #'—0, but also lead to the numerical results prac-
tically coinciding with the HPA at F<0.4.

In conciusion we discuss the question of applica-
bility of the generalized Gamow formula. For the
states with m =0 the integrals entering eq. {7a) are
calculated anatytically. The results for the (n—1, 0,
0) states are presented in fig, 2. The solid curve is
calculated using the HPA and agrees with the cal-
culation by Kolosov [15] performed by a different
method; the dashed curve corresponds to eq. (7a).
It follows from fig. 2 that eq. (7a) has a high ac-
curacy when ax 1, and is qualitatively applicable
even up to a=0.05.
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Fig. 2. Width Fof the (n,, 22, ) states with #=10and 20 1n an
electric field & (atomic units). Solid curves are the exact values
of lg £77"" {full dots are cesults from ref, [15], {----) and
{—.—-—}correspond 1o eqgs. (7 and {61, respectively, f= 10n'£.

Similar results were obtained for the other states
(#,, -, ). It can be shown that eq. {7a) i5s appli-
cable f

aza, = 2n(ln(n+33+5h11 =1, {20}

where d=In{48n")—4=2.16 {the numerical value
of # depends on the problem considered). Since
dn <] not only for #;:= 1, but even at #.~ 1, the
Gamow formula, as well as its generahization (7)),
ceases to be applicable only in the narrow energy re-
gion near the barrier summit {F=~U7,).

Note that the preexponential factor ¢ in {7a),
which is due to multidimensionality of the problem
considered, differs essentially from |. For example,
at F-Q

(FY=2(1=k)}43(L—x2— 1 /2n) F+ O(F?) ,
{21}

where k= (n,—H,)/n, —{l-n"Ngkgl—n"", So,
the difference between eq. (7a) and the one-dimen-
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sional formula (6) is significant {see also fig. 2).

6. The analytic continuation of the quantization
rules

When the energy E— U, the turning points x5
get closer and the Behr-Sommerfeld quantization
rule ceases 10 be applicable, At a further increase of
the energy £, x| and x; diverge in the complex plane
and the applicabiiity conditions of the WKB method
are again fuifilled. At |a| =1 we have

¢la)=—=2mia+1/24a+ ..., in<arga<a, (22)

Taking into account that F=F, ~1il and >0, we
find

Ly |
-I.pd,t:(n+-£+ia}:rr

a2
= (n+3)In+i [ { —p3) ' dx.

L
o0

Since (—p*)"=1p(x), we finally obtain

Sﬁ[pl(;-:)]lfz dx=2n{n+3). (23)
C

where the integration contour C encloses the com-
plex turning points x; and x,. Unlike this, 1in the usual
case of a discrete spectrum [2] the contour C en-
closes the points xq and x, which are on the real axis.

The vahdity of eq. (23) 1s llustrated 1n fig. 1,
where curve (a) is obtained from analytic contin-
uatton of the usual quantization rules and corre-
sponds to eq. (23), and curve (c) is calculated using
the HPA and, up to the accuracy in the figure, co-
incides with the exact solution. Although in the sub-
barier region, F< F,=0.289, the given approxima-
tion {a) does not determine the width of the level,
at F> F, the curve comes close 1o the exact sclution.
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