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The Gamow formula for a level width is generalized to the case of
multidimensional systems with separable variables, A condition for the
applicability of this approximation is found.

1. The problem of calculating the energies and widths of quasistationary states
(resonances) arises frequently in atomic and nuclear physics. If the potential U(x) 18
smooth, and the width T small, the Gamow formula'~ can be used in the one-dimen-
sional case. In the present letter we consider a generalization of the formula to multidi-
mensional systems with separable variables g,, ¢.. .... g,, where f 15 the number of
degrees of freedom.

2. If the barrer transmission is exponentially low, the tunneling in a multidimen-
stonal potential occurs essentially along one of the coordinates. We choose'’ this
coordinate to be ¢, Modifving the Bohr—Sommerfeld quantization rule to incorporate

the transmission of the barrier,™* we find the formula we are seeking:

I'= cTFl exp(—2xay), (1)
where
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Here § is the action, E is the energy, ; are separation constants { 2{_, 3, = consty,
a 1s a cansiant which is determined in the course of the separation of variables,*’ I, is
the peniod of the oscillation of the classical particle along g/, ¢ g*? are the turning points

(k=0, 1, 2), and the superior bar means the expectation va]ue calculated from the
semiclassical wave function:

o [riavtaann | o | 2

Here g% « g, < qf 1’ is the classically allowed region of motion alu:mg the coordinate ¢,
and g''? « g, < ¢!* is the tunneling region, in which we have p? < 0 (Fig. 1 in Ref. 4),
The distinction between the multidimensional probiem and the one-dimensional prob-
tem s in the coefficient of the exponential function ¢, which effectively incorporates
the influence of the motion along the coordinates g, (/% ) on the number of times a

particle collides with the barrier wall at ¢, = ¢}'".

3. Equation (1) reduces the calculation of the width I' to quadrature form. This
equation couid have a variety of applications. We will illustrate its use here in the

particular example of the Stark effect in the hvdrogen atom.

Quasistationary states in a uniform electric field # are characterized by parabolic
quantum numbers #,, 1., #1 (below we use mz0; n = n, 4+ n, - m 4 1 1s the principal
quantum number of the level). The quantities £ =&, — /I'/2 and 2, are found as
functions of the field # from the quantization conditions™ in terms of the variables &
and #. In the case at hand we have f= 2 and

ui(g) = %lm“q“"‘ ~(-1)°¢q, wlq) = -—%, a=1/4, fi+ha=1, (4)

where g = &, ¢ for { = 1, 2. Under the assumption that the tunneling of the electron
occurs along the coordinate 1 and that the effective potential along £ 15 a retarding
potential, we find from (1)

(Rinam)(py = _ & _ 5
r () 1T exp(—2xay,). (5)
Here
4
_ n(—¢?* f dt 2 1/a
ay = —o—5 (4 — Bt +t — )23 (6)
¥ 1
T, = 4ﬂ’fdy(£ ~ W3y~? + 4pyt + Fy)?,
go

A=wF/( —€), B=4B,F/, t, and y, are turning points, T, is the period of the

oscillation along the coordinate 7, and y = 5~ '/ £ ~'. The expectation values are to
be understood in the sense in (3). We are using atomic units and the reduced variables
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FI1G. 1. Width of the levels in a hydrogen

atom versus the reduced field F
(i=¢e=m, = 1). The curves are labcled
with the parabolic quantum numbers #,,
n-, m and also with the value of a.

F=n'8, e=2n%E, —il/2), p=m/n, (7)

For m = 0 and also for states (0, 0, n — 1) with #> 1, all the quantities in (5] can
be calculated analytically. The results of the calculations are shown in Fig. 1. The selid
lines correspond to the Pade-Hermite approximant,”’ and the dashed lines correspond
to semiclassical formula (5), which is highly accurate if @, > 1. The factor ¢, which 1s

£
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FIG. 2. The coefficient of the ex-
ponential function ¢ {see Eq. (1}]
for certain states (#,.#../).
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associated with the multidimensional nature of the problem, is usually quite different
from unity (Fig. 2), so the difference between (1), (5) and the one-dimensiona]
Gamow formula 1s extremely large.

4. If E~U_, then ¢—0, and the oscillation period T diverges logarithmically,
Approximation (1) then breaks down. It follows from Fig. 1 that the point at the
maximum (a = a,,) of the dashed line is a natural boundary of the range of applica-
bility of (1). We thus find the condition

a > ap = [2r(lnno + b)) 1. (8)

Here n, is the number of states with energies £ < U, and b is a constant which can be
calculated (it depends on the particular problem). In the case of the Stark effect, for
example, we would have b = 2.16, and we would replace #, by #, + 1/2. The param-
eter a,, is numerically smail (by a virtue of the factor of 1/2#) even at #,~ 1. Conse-
quently, the Gamow formula, like its generalization in (1), 1s valid except in a narrow
energy interval near the top of the barrier.

' Under the assumption exp( — 2wa,) € exp( — 2ma,) with /=1, ., f~ 1. In the semiclassical case, this
condition is always satisfied (except, possibly, in systems having certain special symmetry properties).
2! The value of this constant depends on the particular problem [see, for example, Eq. (4} |. In contrast with
a. the value of 5, is determined only along with the calcolation of the energy E [in the one-dimensional

case we would have @ = ¢ = 1, and Eg. (1) would become the usual Gamow formula].

310 ather words, these results were calculated through a summation of divergent perturbation-theory series
(in powers of ¥} by the method of the Pade-Hermite approximant. See Refs. 5 and 6 for the details. At
the accuracy level of this figure, the Pade—Hermite approximant coincides with the exact solution of the
probiem.

'G. Gamow, Z. Phys. 51, 204 (1928).

L. D. Landau and E. M, Lifshitz, Quantum Mechanics: Nen-Relavistic Theory, Nauka, Moscow, 1989
(previous editions of this book have been published in English translation by Pergamon. New York).
‘J. N. L. Connor, Mol. Phys. 25, 1469 (1973},

Y. D. Mur and V. S, Popov, Prepnint ITEF 93-89, Institute of Theorctical and Experimental Physics,
Moscow, 1989: Pis'ma Zh. Eksp. Teor. Fiz. 51, 499 (1990 {JETP Eett. 51, 563 (1990} ].

Y. M. Vainberg er /., Zh. Eksp. Teor. Fiz. 93 450 (1987) [Sov. Phys, JETP 66. 258 (1987)].

V. 5. Popov, V. D. Mur er al, Preprint 1C/89/320, Trieste, 1989; Phys. Lett. A 149, 418, 425 (1990).

Translated by D. Parsons

458 JETP Lett., Val. 53, No. 8, 10 May 1991 Popov et al. 458



