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A generalization of the Gamow formula for the width [" of a quasistationary level (with energy
E=F_ —iI'/2)isgivenforthecase of multidimensional systems with separable variables. The
cond:tion for applicability of this approximation is obtained, and some examples are considered.

1. In atomic and nuclear physics, quantum scattering
theory, etc., one often needs to calculate the positions and
widihs of quasistationary states (resonances). Because of
the exponential growth of the Gamow wave function at in-
finity, numerical solution of the Schrodinger equation for
such problems encounters certain difficulties.”’

We shall consider this problem in the quasiclassical ap-
proximation. If the potential U(r) is smooth and the width
of the level s exponentially small, then in the one-dimen-
sional case the width can be calculated using the well known
formula of Gamow®’
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where T is the period of radial oscillations of the particle
inside the potential well (r, < r<r, ) and r, are the turning
points (see Fig. 1 in Ref. 8}; below, wesetfi=m = 1.Ina D-
dimensional problem with spherical symmetry the effective
potential which includes the centrifugal energy is
Ulry = V(r) + [I+ J(D=2)])3/(2r%).

There arises the problem of generalizing Eq. (1) to the
multidimensional case. We shall ¢onsider the particular but
important case in which the variables in the Schrédinger
equation can be separated in a certain system of coordinates
gt+G2,q; ( f1s the number of degrees of freedom}. The
results of the present paper have been reported briefly in Ref.

along one of the coordinates, taken here as ¢, provided that

exp {—2na;) Fexp (—2na,), 1sisf-1.

In the quasiclassical case this condition is always satisfied,
with the possible exception of systems with special symme-
try properties. The remaining notation is as follows: g/’
are the turning points, where ¢ < g, < g'"’ is the classicaily
admissible region of motion in the coordinate ¢,, and
gi' < q, <gql® is the sub-barrier region (where p? < 0); U, is
the mean value of v, (¢) with respect to the quasmlassma[

wave function:
gt

by S
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In the derivation of these expressions it is assumed that
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where 5'1s the action, f; are the separation constants, satisfy-
ing the condition 2!_, 5. — const, a is a constant that de-
pends on the problem under consideration and whose value
is determined in the process of separating the variables,*’
and u; (g;) + B,v,(¢,) is the potential for the coordinate ¢,.
The explicit form of the functions u; and v, depends on
the problem under consideration. For example, in the case of
the Stark effect in the hydrogen atom the variables can be

g separated in the parabolic coordinates’' &=r+ z,
-2, Using the modification of the Bohr—Sommerfeld n=r—2zand
quantizafion rules to take into account the finite penetrabi- a="1, Bitpa=1,
lity of the barrier,”'° it can be shown that gy =" [mH g+ (1)~ &ql, vig)=—1/2g (6)
T=eT,~' exp {—2na;), (2)
N whereg = S,mfori = 1, 2;misthe magnetic quantum num-
where ber, and & is the strength of the electric field
i 9 (i=e=m, =1).
{ 7-L d .
c:[&?,— - = ] , T,=2 S 9% | (2a) Another example is the problem of two Coulomb
b= RO b centers, where
q!g} Cﬁzlflriﬁzt ﬁi+ﬁ'ﬂ-=ﬂt
1 1y , Py Z,+Z)R
ﬂi:TIInSiT? S (— p2)H dg;. (1) Uy, = mz . — (2 :) : , U= 31 ,
(1) 2(5*~1} 2(g*—1) 2(g*—1)
q4 (?)
In Eq. {2) we have taken into account the fact that in a 2, = m'—1 + (£,—=Z;}8n v, = 1
- multidimensional potential the tunneling actually occurs 2{1—x"y’ 2(1—n?) 2(1—m")°
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mwhiché = (r) +r;)/R and g = (r, — r, )/R areprofate

spheroidal coordinates, R is the distance between the nuclei,
and £, ; are their charges.

3. Comparing Eqgs. (1) and (2), it can be seen that the
multidimensional problem differs from the one-dimensional
one by the factor ¢ in front of the exponential, which effec-
tively takes into account the influence of the motion in the
coordinates g; (i#f ) on the frequency of the collisions of
the particle in the classically allowed region with the barrier
wall at g, = g},

In the one-dimensionalease we havec =~ ' = 1, and
Eq. (2) takes the form of the conventional Gamow formula
(1).

In order to illustrate (2) in a nontrivial example, let us
consider the Stark effect in the hydrogen atom. Performing a
scale transformation®’

t=n*x, n=nr'y, wn=min, F=n'&,

(8}

g=2n*E"" ™ [m g=—p?[tmoem)

we obtain

1
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Substituting these expressions into (23}, we casily find
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J(F)=

with

A=p*F{—e)®, B=4p.Fle? y=—cujF.
When #= 0, we have 4 = 8 =0and J{0) = 1. Expansions
in the region of the weak field are given in Appendix 1.

For the states with m = 0 the integrals in (13) can be
calculated analyiicaﬂy (see Appendix 1):

szﬂ( } (l'rf. 3er1 P 2i) .
T=2n3;{— "}r HE( :n 5.'{&; E; 3"}'
an = 2 “—{1 ) F (1,7 2 1—5,).

wherez, = ( — 1Y168.Fc~ *forf =1 and 2.
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- ‘Another case 1n which the quasiclassical width (12
can be calculated explicitly corresponds to the states (0, 0,
n — 1}, which in the limit » — « correspond to circular elec-
tron orbits orthogonal to the direction of the electric field &
Referring the reader to Appendix 2 for details of the calcula-
tions, we present only the final expressions:

Pn=A4,eT,'D, (15)
A, =2 "n{nfe)"*"{nl,
=2(t+1), T=2n/w,, L (16)
where
D= (Enfz)"’( 12_;) 2 Exp{ _.2n ;;,m] h JHEFY+A [F}}1
(17}
with
J(Fy=3""(1-2") [z~ {1—2*) arth z], (17a)
A(Fy=z(1—7) 1 [ {14+37) 5+ (1~ 31) *—2], (176)

z= 2w, [here w; = nw,/¢; and w, = nw, /7 are the fre-
quencies of small oscillations around the equilibrium poinis
& and 7, in the effective potentials U, (&) and U, (n)], and
the variable 7, which determines the dependence of all the
quantities on the field strength F, is found from Eq. (A27).

4. The analytic expressions obtained above for the
quantities o;, 7;, etc., allow us to discuss the accuracy and
the region of applicability of the generalized Gamow formu-
la{2).

The resulis of the calculations for hydrogen states with
n = 10 and 11 are presented in Fig. | {we use the atomic
system of units with fi=e = m_ = 1; the strength of the
electric  field # is measured in the units
mie'#~ = 5.142-10° V/cm). The solid curve, calculated
by the method of Padé-Hermite approximants,®’ is in good
agreement with the results of Kolosov'’ obtained by a differ-
ent numerical method. Note that Eq. (2) is highly accurate
1l a1 and 1s qualitatively correct up to ¢=0.05.

We have obtained analogous results for other states
(%, &5, m) as well [see Fig. 2, whichk shows the values of
log I', for the states (0, 0, n — 1) corresponding to circular
clectron orbits }. Here the principal quantum number n var-
les from 1 {the ground state) to 100. With growth of », the
region in which the quasiclassical formula (12) gives results
close to the exact values of T'"""#"™ (calculated using Padé—
Hermite approximants'*'? } becomes somewhat larger. This
follows from Eq. (20) below and can be seen from Fig. 3,
showing the ratios

Dx=Tn (F}/ T {F). (18)

Here I', correspond to the quasiclassical formula (15), and
I", are the exact values of the widths, which for F>0.05 were
calculated using Pade-Hermite approximants, and for
F50.02 by means of the asymptotic formula

1 EJ:'l-['ﬂ"ri]'”___,.]
~ - { [ 2 T in g + 335 H0in+20 j]}
nint CXP ap FAng e ) |

(19)
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FIG. 2. Widths ", for the states (D, 0, n — 1) of the hydrogen atom.
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EFIG. 1. Dependence of the widths of the atomic levels (#,, #,,
) on the electnic fleld. Here and in Fig. 2 the solid curves corre-
spond to the Padé-Hermite approximants, the dashed curves
cocrespond to Eq. (123, and the dat—dashed curves correspond
to the one-dimensional Gamow formula {c = 1}: the points @
are the values taken from Ref 17, and 4+ are the points for
which a = 1.

which is very accurate for F < 0.01. From Fig. 3 it follows
that in the sub-barrier region F« F_ Eq. (15) 15 better, the
larger the value of #, as we should expect in the quasiclassical
approximation. However, when F: F_ thisformula ceases to
work [here F_ is the classical ionization threshold, which
for the stutes (Q, 0, # — 1) under consideration has the val-
ue'* F, =0.2081).

We note that in this case the factor ¢ multiplying the
exponentiai, which is associated with the multidimensional
character of the problem, is quite different from unity [see
Ref. 9 and also (A13)]. Therefore the difference of (2) from
the one-dimensional Gamow formula 1s considerable, as is
also clear from comparison of the curves in Fig. | pertiaining
to the state (9, 0, ) with » = 10.

5, Let us formulate the condition for applicability of the
Gamow formula and its generafization (2).

When the energy E of the level approaches the top of the
barrier, we have the parameter @ = (U,, — E)/o—0, and
the oscillation period T diverges logarithmically (see Ap-
pendix 3}, as a resuit of which the approximate formuias (1)
and {2) become meaningless. As can be seen from Fig. 1,it1s
natural to take the point of the maximum of the dashed curve
(@ = a, ) as the limit of applicability of these expressions.
This leads to the required condition of applicability:

a#a.={2n{ln (r,+'f) 48]} (20)

Here n, is the number of levels with energy £ < U, ,and b is
a calculable constant which depends on the specific problem
{see the examples in Appendix 3). For example, in the case
of the Stark effect & = 2.16, and n, must be replaced by x,

{since tunneling is possible only along the variable # asso-
ciated with the parabolic quantumn number #, ).
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FIG. 3. The ratios g, defined by Eq. ( 18) for the
states ({, 0, n — 1) of the hydrogen atom as
functions of the reduced field F.
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The parameter a,, i1s numerically small even when
#, ~ 1, and with growth of n, 1t decreases (logarithimtcally).
Therefore, the Gamow formula, as well as its generalization
(2), ceases to be valid only in a narrow region of energies
E= U, where the level width I is no longer exponentiaily
small.

When EF~U_, and all the more so for above-barrier
resonances (E > U/, ) the values of £, and " can be found by
solving (in the complex plane) the equations that follow
from the quasiclassical quantization c¢onditions with
allowance for the finite penetrability of the barrier. Such a
calculation'” is, however, considerably more complicated
than the explicit quasiclassical fermulas (1) and (2).

6. Caiculation of the penetrability of three-dimensiconal
barriers that do not possess spherical symmetry i1s of interest
for many problems of physics and chemistry. Usually, sepa-
ration of variables 1s not assumed, and the barrier penetrabi-
lity 15 regarded as exponentially small. Tn this case the calcu-
jation of the probability of tunneling reduces to
deterrmimation of the most probable sub-barrier trajectory
and of the bundle of trajectories close to it, which is required
for the calculation of the pre-exponential factor. Such an
approach has been long in use in the theory of multiphoton
ionization of atoms and ions {the imaginary-time meth-
od'*'?) and in the calculation of the probability of creation
of e “ ¢~ pairs in a variable electric field,”™?' and it has also
been developed in detail (for the example of the two-dimen-
sional anisotropic anharmonic oscillator) for the calculation
of the asymptotic behavior of the higher orders of perturba-
tion theory.”’ Further development of this method can be
found in Refs, 23-25.

The success of this method is wholly dependent on the
possibility of finding the most probable sub-barrier trajec-
tory in an exphcit form. It seems that in this way one can also
obtain the formula (2) for a system of / degrees of freedom
and separable variables. However, this result is not con-
tamed 1n the quoted literature, For a particular case such a
formula was obtained?® by a direct but more involved calcu-
latien of the flux of the particles emitted to infinity.

APPENDIX 1

Theintegral J(F} in {13), which determines the barrier
penetrability, 18 in gencral (for arbitrary quantum numbers
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n,, ny, and m) a rather complicated elliptic integral. We
consider several cases in which the calculations can be sim-
plified.

1) If m =0, then in the effective potential U, {n) the
centrifugal term is absent. 4 = 0, and

F(F)=3n-27"" {(1—2,}F {"/,, %42 2: 1—2,)
{ 1+ 162 [In 2:— (14610 2) )+ ..., z,—0,
321 (1—2,) +O{(1—3z,)?),

(AD)

-—
—

22“" 11

where z, = 48 = 166, Fc . The value z, = | corresponds
to the classical ionization threshold'*'® F_, at which the
barrier in the potential U, (%} vanishes. The expressions
(14) for o, and 7, follow’* from the identity

'
J(_1$I+i) z* dx
o I

_ atT{vt*,) (1 ) F( 2v+3 2v+5
F{v+2) 4

where x, = 1[{1 +A)"? - 1] and x, = }[1 —~ (1 —~ 4)*?]
for the upper and lower sign, respectively. In the derivation
of Eqgs. (Al) and (A2) use has been made of the integral
representation of the hypergeometric function and the
Kummer transformation.?’

2) For the states |0, O, n — 1) with n— « the polyno-
mial 4 — Bu + & — w® in (13) has a multiple root:

we=u=f 1= (1—0}"], u,="[1+2(i—a)*], (A3J)

where o = 3z,. This can be seen by using the expressions for

the minimum of ¥/, {%) and other quantities given in the
parametric form [see (A26) and (A27)]. Here

t(1+1) {(1—+)?
S et BT e wiwtue=l
(A4)
A=T‘I_‘1“T:}=f‘{'1""31:)3111.;,1;111.3, (A3)
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which indicates the existence of a multiple root. The integral
(135 can therefore be calculated in terms of elementary
functions [see (17a})].

33 In the weak-field region it 15 possible to calculate
J(F) for any values of n,, n,, and m. In this casc we have

w, =& F+...andu; =1 —c,F+ ..., where
eo="L {pTp} A (p—u} " P, c.=2p, (A6)
p={2n,+m+1)/n, n=m/n. (A7)

Introducing a matching point & such that &, € €1, we spiit
the integral into two parts: J(F) = 1 (J, + ./, ), with

) , 1 1
!1=I—H{A Bu—l—uz]"—u-—?u —?HuﬁﬂAIa[thE

LY |

1 1
—?Blln{-ﬂiﬁfﬂj+1 — - In(1-%) ]

1
du“{ , A—EBu }
o= ] — e A0 B o ...
%[u, (%) 2u(1—u)" -
2 _ .1 _, 1 |
= — Ut it —2ln+—HBat+.,
3 H+4 7] 5 Bllnz—21n2) Z i
whence™
J(Ay=1+Y.Blla B—(1+4In 2) +e(§) 1+ ... (A8)
wherc
g(&)=".[ (1+E) In (1+E)+{1—E) In (1-0) ],
(A9)

§—24"B~'=p/p+O(F).

Inserting here the expansion B = 2pF + ... when £ -0, we

find
FFYy=1+"pF In F—kF+ . .,

k='lp[1+31n 2—Ilnp—o(un/p}], {A10)

and we finally obtain
2na,=2nf3F+(2Zn.4+m+1}In F

—n{3+{(31n 2—~2}p—*fil (p+p) In (p+p)
+(p—p)lnlp—uil}+...

(ALD)

We note also that

g=n{1=LF+ ...},
mi—1
Tz=ﬂ[i—iﬂ+3(’1“—ﬂ.+ )F‘i‘],
12nt

(Al2)

e=2(1—n)+3(1—2+(m*—1}/6nr"YF+ ...,

o/ To=(1/227°) [1—/o0F +O (F?)] (A13)

(theexpansions for o, and 7; are obtained by replacing x by
—x and Fby —F). Here x =(n, —m,)/n, p=1—x,

where 2 —n '2pen~', 1 —n~ 'zu>0, and p>pu for all
the states (n,, #,, m) with a given value of n.
APPENDIX 2

Let

V{r)=--g(m/mR) v (r/R), (Al4)
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where g is a dimensiontess coupling constant and R 1s a char-
acteristic range of the forces (below, we set
fi—=m=R=1).1f {31, n,, then the particle 13 locahized in
the vicinity of the classical equilibrium peint r = », in the
potential U(r) = V(r) + (I + 1)/(2#*), which can be
found from the equation r *v'(#) = — v. This explains the
validity of the 1/# expansion.”® We apply a variation of this
method, developed in Refs. 29 and 30, and restrict ourselves
to nodeless states. Setting

v=nt{pg, E.a=g%c.f2n, n=I+1,

(A13)
r=rq.(1+n="p),

in the region |p| €#n'/? we have

Xa (F)=ri,, o (ry={nafrr?} e [{+0(n"") ],

w=[34ruw" (r) v (r:) 1", (A16)
and (Fyi(rydr=1+ 0(1/n). The last expression is valid
in the classically allowed region including the turning points
r, lorp, = + o~ "*). By means of the WKB method it
can be continued into the sub-barrier region (p<p . and
p>p ., ). Inparticular, for r, <r<r, we have

(Al7}

where

r 2 —1 ‘L
L LM e, T R O

n'r? v et
=r~—=(2fv)v(r) 4.,
Sy=r—+g,, se=(0—1)r7,
(2ivYu{rd) —rs "

(A18)

QEE_E‘!,‘F’ qﬂ==

We note the following expansion, which will be useful later:

Jou-loas Lol 2550
_—-ln[ 4n£m(;£u_1)=]+“i

(A19)

Using the usual matching rules, from (A17) we obtain the
divergent wave corresponding to the quasistationary state:

wd ]‘*”

{4} _ _u,
X (D)= (ne) [zr.fp{r:u

x exp{ E[ n:[ B(r)dr+ E’i—]}, r>r.  (A20)

where p(r) = nP(r) is the quasiclassical momentum [under
the barrier we have P(r)y =iQ(r}] and
D = exp{ — 2nf* @ dr} is the penetrability of the barrier.
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Let us apply these formulas to the Stark effect in the -

hydmgen atom. Consider the states \0, 0, n — 1) in which
“radial” (in the variables £and n) excitations are absent and
where in the limit 7 — oo the particle is at rest at the classical
equilibrium point £, 1. Going over to the scaled variables

(8), we have

- 1-2n~" 4
U, (x)= = 22” _EB e U= i ﬂ'E—FH,
& T ] Y
, wly), W-<<y<<y,,
ry=Ne™ frap {I
Pir)= (EM) . (= D)y a

(A2l)

The condition of normalization to one particle in the well,*'
43
B S pl*(E+n)dE dn=1,

defines the constant N

N (A22)

1 ZIGEE_]""
n{zetye)d

Calculating the flux of particles moving to infinity by means
of {A21), we find the width of a Stark resonance:

FﬂzAﬂCTﬂ-i!JT {15523)
where”
45, 21 , Yo
cm ey Tym =2 b (A24)
N [ gy \ nH Gﬁﬂi for n=1,
A, = AT 10132 for n=2=2,
n! Vg o
(a/e} 5 {1—1/12n+ ...}, n»1
{A25)

For the states [0, 0, n — 1) with n3% 1 the turning points y,
and y, are close to each other, the quant:ties entermng into )
hecome simpler,

QoY) =F"{y—yo) (Y1) "y
Se(y)=1/2y" eV 43"y,

and the barrier penetrability I can be calculated explicitly
[see (1T)=(17H) 1.
We shall give explicit expressions for the quantities that

appear in the above formulas. Thetr dependence on the field
Fis given in the parametric form

rn={1-1)2(i—1}, ye={1-1) " (t-F1}, go=7""(1H1)F
w,=(1+31)%2{1+1), w.—=(1-31)5/2{1—-1),
e=¢'bnT et L
£ =—(1—15) (14 37%),

M= {1—12)* (1+31) "+ {1—3t} 21, (A26)
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g [In{l/a) + ¢, ] = (27)

B=B"Fn B+, B =Y (1—37%).

ﬁl{”=‘—ﬁ=“j=ia"4“—'5=] [(+T) (1+31)"
— (1—1)} {1—31)*—41],

t{1—1t)*=F, (A27)

with the choice of the root r = 7(F) that vanishes for #£—0:

FHAP+42F+ . F—0,
S " e
3 9 o), F—=F,

(f=1—F/F,) Inthelimit F— F_ the frequency behaves
as e, o f 7t~ 0; when F» F_, the classical equilibrium point
moves away into the complex plane, and the 1/n expansion
determines not only the positions but also the widths of the
Stark resonances,'*'® which cease to be exponentially small.

APPENDIX 3

When a — 0, we have®

TF~=w{In (1/a) te,+0{a) j, (A29)

where

- JRY v
=In Ji+In 1260 (Zn =20 )) + 2 j(i_]" S )d.r,
Jo "N B r.—zx

(A30)

J, =TI rpdx, p=p(x, E= U, }, x_, is the position of the
maximum t::f the poteniial, U = Ul(x, ),
w=[—U"(x,)]"" and X, denotes the positions of the
turning points at ¥ = U/ (so that X, = X, = x, ). When
a1, we have

r.rr

'@ fln (1/a) +teo) " exp (- 2nae), (A31)

from which we gbtain the equation

' for the determination of @,
Using the fact thatJ, = (ny + 3)7m + O(1/n, ), we arrive at
the condition {20}, in which

“m

1
b=In{2nw (xm—T s ]-I*EJ.( )d:r.
{:f:) Em— T
(A3Z)
Let us consider several examples.
a) For a parabolic barrier
Viry=-"Lae*{r—R)? 0<r<e (A1)
{I=0}, weobtainx, =0, p =w|r— R |, and
Jo="LhaR: b=Indn=203. (A34)

b) Generalizing the preceding example, let us st
plry=twr./(a—p) 1 {p"-p*). p

(¢>F> — 1), which corresponds 1o the behavior
Virye — rfforr—0and Vir)e — r*forr— oc. If@ =1

=rir.,

(A33)
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and £ =0, then we return to (A33); the case o= +,
B < 1 corresponds to the spherically symmetric (/= 0)
model of the Stark effect, etc. In this case the quantities J,,
¢o, and b can be calculated in an analytic form:

v=0rn'{ {at+1) (B+1),

(O ) o o, (10))

where ¢(z) =T'"(z)/T(z) and C =0.5772... is the Euler
constani. In  particular, for @=1 we have
b= in[4w{l + B/ (1 —B)*] (the condition B> — 1 ex-
cludes fall to the center'' ).

c) Finally, let us consider the Stark effect for the states
with m =0 and 7% 1. In this case the effective potential
U, {n) possesses a barrier as long as z, = 168, Fg <« 1.
Taking into account the fact that when z; = | we have the
relation'®

ni—e }’“ 3n

(A36)

. . —_ 2
27t ly_p, 16 (2R, 1), (A37)
from (14) we find
3
o= (B 1) () F .
16
1 . T2Ty
T,=const] ln —-- -+ 23 2-2)+... 1, 1+ = 0(1),
}-_Z'i ﬁng
whence
b=ln (48n%) —4=2 16, (A3R})

We note that the last coefficient is numerically close to the
value of & from (A34).

"’ Moscow Engineering Physics Institute.

* 8. I. Yavilov State Optical Institate.

*'See, however, Refs. 1-5 and the literature guoted there. Among the
numerical methods of deterrining the resonances we mention the
method of complex scaling,'* which works well for sufficiently narrow
resonances.

*' Equation {5) corresponds to the case in which the variables in the Ham-
ilton—Jacebi and Schrodinger equations separate fully. This case covers
many physical problems: the hydrogen atom in & homogenegus electric
field, the problem of two centers, geodesics on a triaxial ellipsoid,
etc.'!"" Note that (unlike @) the separation constants 8, can be deter-
mined only together with the energy E.

'Here n1, n,, and m are the parabolic quantum numbers (m30), which
are conserved in the presence of a homogeneous electric field ¥, and
R=n, +n, + m+ 1is the principal quantum number of the level. In
{10) and {11) we have taken into account the fact that the tunneling of
the electron occurs along the variable  and that the potential &, (£) is

) confining, "'

'Le., by summation of the divergent series of perturbation theory (in
powers of the electric field ) with the help of Padé-Hermite approxi-
mants (for more details about this method, see Befs. 14 and 16). Note
tl:lat within the accuracy of Fig. 1 the Padé~Hermite approximants coin-

. ¢ide with the exact solution of the problem.

Forv= — 1 and 0, respectively.
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B Ax expected, the arbitrary matching point & drops out of the sum
Joo+ A

“"The calculation using the {/r expansion gives the value
A, = {a/e)"* = 1.075..., which is independent of n. The coefficient 4,
piven in (A253) was chosen so that in the imit F—0 the expression
(A23) coincides with the exact asymptotic formula (19) for all values
n=1, 2, 3,.... Notethat the values of A are numenrically very close to
unity: thuos, (A23) has only a percentage deviation from the general
forula (2.
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