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Resonance states of a positron in the Coulomb field of a nucleus and in parailel homogeneous
electric and magnetic fields are studied. In the classical description, the positron undergoes
oscillatory motion along the symmetry axis, being reflecting consecutively from the nucleus and
the anode. The magnetic fieid does not permit the positron to go around the nucleus and move to
the cathode, stabilizing the resonances. The nucleus is regarded as infinitely heavy, and the
problem reduces to a one-particle Schrodinger equation. The energies and widths of the
resonances are determined by means of versions of pertuebation theory in weak electric and
strong magnetic fields, the 1 /n expansion, and the quasiclassical approximation. Different

methods are in good agreement with one another,

1. A positively charged nucleus acts on the positron as a
repulsive Coulomb center; therefore, such a systemn does not
have bound states. However, in the presence of external
fields, including the field of another nucleus,"’ there are
quasistationary states. In the present _paper we study the case
of homogeneous parallel eleciric {# ) and magnetic (&)
fields. Even though there exist many papers on the motjon of
an electron in the nuclear field and in the fields # and %, the
motion of a positron has not yet been considered. Such a
model, being one of the simplest ones, deserves theoretical
attention.

The pe ™ system is not electrically neutral and rapidly
disintegrates while being attracted to the cathode. There-
fore, in positron scattering on protons in the # f # fields,
pe” resonances will arise only for a very short time. Experi-
mentally, the transitions between different quasistattonary
levels will produce individual lines in the radio-frequency
spectrum.

In Sec. 2 we obtain the asymptotic behavior of the ener-
gy 1n a weak electric field, and in Sec. 3 we obtain that behav-
ior in a strong magnetic field. In Sec. 4 we make use of the
1/n expansion (for the states that in the limit 7 — « are de-
scribed by the classical motion of the positron along a circu-
lar orbit). In Sec. 5 we apply the quasiclassical quantization
rules for a purely electric field (# = 0).

2. Assuming that the nucleus in infinitely heavy, let us
solve the one-particle Schrédinger equation with the poten-
tial

Vip, 2)=1/r+&2+!/:06%", (1)

where p and 2z are the c¢ylindncal coordinates,
r= (p* + °),"? the fields & and # are directed aiong the z
axis, and the atomic systemofunits i=m, = ¢ = | is used.
The nuciear charge is set equal to unity, which can always be
achieved by a scale transformation. In Eq. (1) we have
dropped the paramagnetic term 1#(L. + 25.), whose
contribution to the energy 1s trivial.

[n the ciassicai approximation the positron can either
be at rest at the point of an extremum of the potential (1) on
the symmetry axisatz = z, = % ~ '"? or it can oscillate along
the z axis between the nucleus and the anode. In a sufficientiy
strong magnetic field &> 2%, the point (o, = 0,7,) be-
comes a local minimum of the potential, and the stability
condition Is fulfilled. The electric and magnetic fields in the
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vicinity of the point (p,.z,) form a resonator,
A lower bound on the energy of the resonances i given
by the minimum of the potential

Ep]= I‘r(p[h zg) :Eg.:?.
An upper bound on the energy, above which in the classjcy

limit the resonance can decay, 1s given by the value of th,
potential at the saddle point:

E.=V(p.. 2)="1.(#/2) %+ 28" 58",
where
=2 [ {62V e -4F ), 1,=4F .

Let us represent the potential in the form ¥V =
where

Valp, s}=2&"+"/26"p*+ [ —"{p*+ (2~-15,)* ] &*

Vﬂ ".+' W:

18 the harmonic-oscillator potential summed with the energy
E,, and

Wip, z)=[’fap*—(z—20)*] {2—2,) &+ [sp* =3 (2—2,)%*
+{z—2,)! | &+ O(&®) {2)

is the perturbing potential. In the harmonic-oscillator ap-
proximation we have

E=2&"+ (2n,+m+1)w,+ (n.+':) 0.,

where w, = a#*>* and w, = y2&"* are the oscillator fre-

quencies; #,, n,, and m =0, 1, 2,.. are the quantum
numbers; and
a={HAE—1})", (3)

Taking into account the nonharmonic character of (2), we
find

SEPTRL P EA T.
X [41#‘2'(14-&2};::% e ey 2 ﬂ} E+0(&"),
| (4)
where, for hrevity, we have introduced the notation
N=n+m+1, p=2n,+1. (S}

It is clear that Fq. (4} is an asymptotic expansion of the
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- (in powers of #'*) when & -0 and the ratio
-' remamﬂ ﬁxed.

..‘.-

; 'qdlsappearance of the minimum of the potential. An-

er p-olc, lying at a@ = J2/2, corresponds to quasicrossing

: ';: oscillator energy. For the lowest levels Eﬂ 0,m)
sicrossing does not occur, and thm pulc as expected, 1s

um and product of the energies of two excited states
§i __} and |1,0,m) also have no pole at & = 2 /2. Thus, it
iu* sible to find these energies near the quasicrossing pmnt
Sﬂlutlﬂn of a quadratic equation. Similarly, the energies of
h ﬂtates 0,2,m), 11,1,m), and {2,0,m) can be found by
“"'u g a cubic equation.

"""‘:# he results for the energies of different m = 0 levels,
"IP ted by means of Eq. (1) and the above observations,
,if-""h esented in Fig. 1. The magnetic field 15 fixed and
nts to 23.5 kG or 10~ ° a.u. The disappearance of the
Enllt!timum of the potential occurs at &, = (F/2)*° = 440
gf cm, and the quasicrossing of the levels with the same vai-

¥of n, + n, occurs at &, = J2/3%, =359 V/em.

it At F = D there exist Gnl}' the Landau levels with ener-

'W‘ NZ /2. When # » 0, owing to the possibility of quan-
ion along the z axis, each Landau level becomes an infi-

_m"ﬂ'stem of sublevels with different values of r,. Quantum
raasitions between close quasistationary levels can be ob-
etved experimentally in the radio-frequency band.

" ** The dashed curves in Fig. | show the exact energy ob-
-' by summation of the 1/n expansion (see Sec. 4 be-
: :'{l 1t is clear that in order to desctibe the quasicrossing of
vels |7 ,1,0) and |n, + 2,0,0) higher terms of the ex-

BON (4) must be included. With approach to the classi-

LE
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FIG. 1. Energy of positron resomances in the & [|#° fields at
& = 23.5 kG, The soiid curves are calculated using Eq. {4); the
dashed curves give more accurate results of the summation of the
1/n cxpansion. The curves are labeled by the quantum numbers
|n..n,.m). The dot—dashed line shows the height of the potential

barrier £, — E,.

cal disintegration threshold E, (the dot—dashed curve} the
levels become wider, and with further growth of # they
cease to be quasistationary.

When & » # . the potential no longer has & minimum,
but analytic continvation of Egs. (3) and {4} gives a com-
plex energy which defines the position (Re £} and half-
width ( — Im E) of the resonance. For instance, in a purely
electric field, substituting & = — i into (4), we obtain

E=028"+ (?*”2—“- N)ﬁ'{f%— 3( At —E-)—-—]g’
bt [ 2 oy aim — 22 )
10240 12" 2 2

+IN(12p 23N HBImE—31) | BhLO@E),  (6)

where we have written out the term ~ £ ¥ whichis absent in

{4}
3. Let us now choose the unperturbed potential V; and
the perturbation W in a different way:

Vo='fu ' p* +1izT& 1,
i (7)
W-——V—Vn=—1—-ﬂ-
r z
1 L
— — =3 — 2t — — 7T 0 p?).
5 p° -+ 3 P 16 “p (0*)

In the unperturbed Schrddinger equation the variables sepa-
rate, and the wave function factorizes:

I(P, z} =Fﬂ:{3] tn'm mJ, E=Ep+En

where F, {z) and E, are the eigenfunction and eigenvalue of
the one-dimensional Hamiltonian
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Hym— e —— 4 p(z), u{z}ﬂ—;—'}wﬁ,

and |n,,m) and E, = N5%°/2 are the wave function and en-
ergy of the two-dimensional isotropic harmonic oscillator
with the potential #7p*/8. Consistent inclusion of the per-
turbing terms (7) ieads to the following expansion for large
values of #"

N

?ﬁ-hﬁ'; +Z E™2g*, {8)

o |

E —

The coefficients £V, £'¥, etc, are found by means of Ray-
teigh-Schrédinger perturbation theory. Making use of the
fact that in the oscillator basis we have

{ng, mipd|n, md=2NH,
ng, m{p*|ny+2, my=[(N+m+1} (N—m+1)] "5,

we find that up to terms of the order .# ~* the energy is
determined by the one-dimensional Schradinger equation

{{.NE+H — Nz % (BN —m*+ 1) 2556
~ [N (SN—3m+7) 27+ N3~ | 6~ E} F (3) =0,

In order to obtain explicit formulas for the coefficients
E ) at small values of &, we expand the potential v(z) in the
vicinity of the minimum z, = # ~ /%

v () =28% 4 [z——z,,)’é“*-%E (2—zo ) HEE T,

I.=|:|i

Now, proceeding by analogy with Sec. 2, the energy £, and
the matrix elements entering into the formulas for £ ' can
be expanded in powers of #'*, As a result, we find

2 t
E{“-"HE;:‘SL&' [2 -+ —2—}?3"& + "E?' (—3p=+5}$“
¥2 P

+4Dﬂﬁ

(23p=+5)3’-"+o{3}]
E*”n—N&‘[ 1 +3—F~2~p+ L —apranes
87 64
+2-91p (1154 8217) &+ &) ]

1572 1
My + :+3|' i
% p& Ty (75p*+3505)&F

E“‘=E""{3(i—m')[ i +

+2"p (4755 +208845)8 +m[3;—13 &

1
o= (75 811) 8-+2-4p (4655 +892 851) é?‘-"] +0 (@:)}

= 1
E”’=—N3’*’[ 14372 p&™" + (575" +235) &'

¥2p 1 425Y2
+—28 (983521110 803)F" a1 @ 4 2EOV2 )
5048 0P 303) (2 e 4
t 4372
ol 2ot
TG Tl (&)

where N and p are given by {5).
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Note that by substitution of (9) into (8) and "
ing it is easy to obtain the expansion of the energy for kda ",
# and & -0

E=\\.NH+2&E" "+ 1,¥2p& 5+ . .

4. In the method of the | /# expansion the energjeg Of the
states with fixed #,, n, and with m — = are expandeq i
powersof n =, where # =n, +n, + m + 1.

L=, =]

f=nt 2 -

k=i

With growth of » the fields # and # decrease in such away
that the scaled intensities F = n*% and B = p.%° remain
constant. The details of the method are given in Ref, 3. Agy
rule, at first (k£ %3) the coefficients £, decrease (in mody.
lus) and then start to increase. In a sufficiently strong elec.
tric field £ F. (B) the coefficients ¢, become complex.
Summation of the 1/n expansion by the method of Pads
approximants allows one to calculate the energy” even in he
least favorable case s =1 The calculated values of
E(# %) for the ground state are shown in Fig. 2 (ig au.),
With growth of %" the level energy grows, whereas the width
decreases. When & < &, = n~*F., the width of the lﬁé&
very small, and the 1/n expansion does not allow ﬂng,h
determine it. For #° =0, 0.1, 0.2, 0.3, 0.4, and 0.5 ﬂﬁf@d
#. =0,0.010,0.023,0.037, 0.051, and 0.066, respectiudiy
S. When #” =0, the variables in the Schrédinger agna.
tion can be separated in the parabolic coordinates & ::fr.{.;
and 77 = r — z. The energy of the highly excited states’is
found by using the quasiclassical Bohr-Sommerfeld qu ith.
zation conditions in the variables £ and 7. Jm
When m = 0, the required integrals can be calecaf it
analytically as in the case of the Stark effect in the hydrogen
atom.* As a resuit, we obtain the system of equations =~

E e ) (1 ), L

45 £t K 2

B, {4P.F i

— 7 E”ﬁ+_‘ ;0
Y2 £ ( E3 ) ) v 10)
B fa=—1

where f(z) = ,F,(},3.2,z) is the hypergeometric function.
When # —~0, the quasiclassical energy can be expanded in
powers of & ', the first two terms of the expansion coincide
with the exact terms (6), and in the other terms only the
coefficients of the leading powers of ¥ and p are correct.

In the classical limit 7, — o« the longest-living reso-
nances |#,,0,0) correspond to the oscillations of the positron
along the z axis between the nucleus and the anode. The
degree of overlap of the neighboring long-living resonances
i$ charactenized by the parameter I'/AE. When ¥ -0, we
have I'/AE = 2 = 1.41. Numerical solution of the system
(10} showed that with growth of % this ratio increases
slightly, reaching a value 1.75 at # = 20kV/cm for n = 30.
Therefore, as in the case # =0, all the long-living reso-
nances overlap each other, both in weak and in strong fields.
In contrast to positron resonances, Stark electron reso-
nances cannot overlap even at positive energies.
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F1G. 2. Energy (a) and width (2) of the ground
level as functions of & and #°. The numbers near
the curves indicate the values of the magnetic ficld
&°. The energy and the strengihs of the fields &
and # are measured in atomic units, and are, re-
spectively, 27.21 eV, 5.142-10° V/cm, and
2.350-10° G.

e o8 77 515 7 5,05

6. Let'us fornmrulate our main results. When the condi-
on A > 16%°.is obeyed, positron resonances with ener-
$5.7 « E, decay by quantum tunacling, and their width is
jite small. Depending on the choice of the unperturbed
amiltonian, it is possible to expand the solutions both in a
gk electric field (4) and in a strong magnetic field (8).
3 energy can be found exactly by using the 1/» expansion;
thecase of large values of », and a1, and a purely electric
231t is convenient to use thequasiclassical approximation.
he effects of the finite nuclear mass, relativity, and the
ty of annihilation have not been taken into account
3@ require separate study.

i Note that a pair of positrons or electrons does not form
Milar resonances, since by a transition to a moving refer-

T ks

frame the external electric field is eliminated.
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M Pasitrons can be temporarily captured by an open resonator formed in
the gap between the two nuciei.' Such resonances are not necessarily
connected with the narrow positron lines observed in experiments (the
so-catled Darmsiadt effect).

B In contrast to the hydrogen atom, in the limit & -0 the pe* system
disintegrates {the positron moves away from the nucleus and goes ontc
4 Landau laval); therefore, the energy and other quantities have a singn-
larity at ¥ == (. Forinstance, the distance between neighboring levels is
AE -~ #%3* The same unusual behavior of AF at & —01is also character-
istic of Stark near-threshold resonances, where it is a consequences of the
guasiclassical Fmit.”
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