J. Moscow FPhys. Soc. 2 {1992} 188-217. Printed in the UK

The 1/n-expansion in quantum mechanics and
quasi-stationary states

[ 3

V D Murt, V 5 Popov] and A V Sergeev§
T Moscow Engineering Physical Imstitute, I_{n.shirukue snosse 31, 115409 Moscow,

Hussia

} Instituie of Theoretical and Experimental Physics, Bol'shaya Chervomushkinskaya
25, 117259 Moscow, RHussia

§ 5 I Yavilov State Optical Institute, Birzhevaya 12, 198034 5t. Petersburg, Russia

Received 28 June 1992

Abatract. Applications of the 1/n-expansion to energy and wavefunction calecu-
lations, especially for quasi-stationary states, are considered. An an illustration we
have examined the funnel and Yukawa potentials, the Stark effect it a atrong field
and a hydrogen atom in eleciric and magnetic fields. ¥We have found that in many
cagc the method ensures high accuracy, even for small quantum number, n ~ 1,
The connection between these results and the properties of coherent states is bricfly
discussed. Finally, the hehaviour of the large-order terms in the 1fn-expansion is
investigated.

1. Introduction

The 1/N-expansion [[-22] is 2 most effective method in quantum mechanics and
ficld theory, widely used at present in varicus physical calculations {e.g. see reviews
[8-10]). Versions of this method differ in the choice of the expansion parameter:
N=1+D/2 where [ =10,1,...is the angular momentum and D the space dimension
(3-5}; N =1+ D/f2 — a (the shifted 1/N-expansion [7], with a the shift parameter);
N = {I(i+1)]/? (see [17]); etc. Here we discuss the version of this method introduced
in [11] and developed in {12-22]. An essential aspect of this approach is the possibility
of not only using in the case of a discrete spectrum but uging it in calculating the
energies and widths in Breit-Wigner resonances {complex energy £ = E, — il'/2).
This problem frequently occurs in atomic and nuclear physics, scattering theory, etc.
As an example, we consider quasi-stationary states in short-range potentials, the Stark
effect in a strong field, and a hydrogen atom in electric and magnetic fields, The
structure of the higher-order terms in the 1/N-expansion and the divergence of this
cxpansion are also discussed.

2. Description of the methad

Consider the attractive potential

2
Vi) = -gmetls) 2= .1
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where ¢ is the dimensionless coupling constant, R the characteristic range of
the potential V(r), n = p+{+ 1 the principal quantum number, p = 0,1,2,...
the radial quantum number {(sometimes denoted by n,}, and { the angular momentum;
below we set i = M = 1. If n — oo and p is fixed, the particle is localized around
the classical equilibrium point z = z, determined by the following equation {11, 12]:

z3v' {2) = —v (2.2)
with v = n2g~!, and the energy E,; is (§?/2n? R*)e,,, with

(1) 3)
e= e 4 : + :

— gt (2.3)

Note that the coefficients of the 1/n-expansion, ¢(*}, depend on v, or n (e.g. see
equation (4.2) below). As arule, the series (2.3) is not convergent but only asymptotic;
nevertheless, in some simple cases it gets truncated. For example, €9 = —1 and
e(®) =2 0 for k > 1 with the Coulomb potential.

In the case considered here, D = 3, { — oo, and N =n. We will, therefore, speak
of the 1/n-expansion. The comparison of the Schrodinger equation at r ~ ry = Rz,
with the equation describing the harmonic oscillator shows that n is analogous to
M/h. The amplitude of vacuum fluctuations of this oscillator is proportional to
(h/Mw)f? ~ n~1/2_ Accordingly, we introduce |

z = zo{1 + En~Y7) | (2.4)

and expand all quantities in powers of n~%2 (contrary to r, the variable £ remains
finite as n — co). In this way the coefficients of expansion (2.3) and the corresponding
coefficients of the wavefunction expansion (in powers of n~1/2} can be determined
successively. For mstance,

1 — 2 2
Emjzf U_g)¥ (0 (@pt 1w =1)v

T2 z?
2 2

@ (v Y[3e+1)” oyl _

€ (wz%){ 3 wio —w )+2u (r+ 1) (2.5)
— }-l-a*i +p(p+ )| +?(r—1) - 1—552]
16 8
where

w = [3(1 — vg)]H? c=4(1-1) r=%-l?* (2.6}

3(—z)*+! d""'iu/du .
- 2.7
e T k1 3) dzFt?[ dz pzzo(v) (2.7}
and v_g = —2v(z,)/Tev'(zy) (note that w is the frequency of small oscillations about

the equilibrium point z,). Analytical expressions for coefficients ¢*) with k > 3 appear
too cumbersome, but they can easily be obtained via recurrence relations convement
for a computer.
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Special consideration is required in the case of £ = ( (i.e. in the event of a bound
state appearing in a short-range potential}). As a rule, the ‘reduced’ energy e{v)
increases with v and at some value v = »55 the nl-level moves into the continuous
spectrum. In the lowest approximation {n — co),

d{(uj

Ver = 253“(:&&} “&';_

= 2uv(Z,) (2.8)

F=H:' *

where T, 13 the root of the equation zv' + 2v = 0. Corrections proportional to 1/n
can be obtained from (2.5). Denoting the coupling constant corresponding to the zero
energy of the ni-level by g.;, we obtain

_ni b, b, 1
I = g Lttt +G(;—3-)] (2.9)

where

b ={2p+1)w—-1)

17, 1 110?
53—2[‘*’ -u—5+E{3.:r+r+3)— &ﬁ] (2.10)
1 1502
2
+p(p+1)’2w — 2w~ 0+ ;ﬁ-(ﬁa+r+3)- Ew*]
and the quantities w, # and 7 are taken at z = Z,,.
With a further increase in v the frequency w vanishes at ¥ = w,. At this

point the classical solution loses its stability—a collapse of two solutions occurs, one
corresponding to the stable equilibrium point and the other to the unstable equilibrium
point in the effective potential U{r) = V(r)+{({+1)/2r* which includes the centrifugal
epergy. For v > v, the potential U/(r) possesses no minimum at r real, the equilibrium
point moves into the complex plane and the coefficients of the 1 /n-expansion become
complex-valued. But such solutions, though having no physical meaning in terms
of classical mechanics, are of special importance to quantum mechamcs: they are
the solutions determining within the 1 /n-expansion not only the position but also the
width of a resonance level,

3. Wavefunctions and the %(¢) value

Evaluating wavefunctions and, in particular, determining the coefficients of their
asymptotics as r — (0 and r — oo, is a problem of considerable importance to physics.
Using only two terms of the 1/n-expansion, we can obtain analytical expressions that
are asymptotically exact as n — oo for an arbitrary smooth potential.

Performing to this end the substitution (2.4), we take into account that in
the region |¢] € n!/? the function x,, = rR,,(r) coincides with the wavefunction
of the p-level of a harmonic oscillator with a frequency w. Continuing thia function
(by the wKB method) into the sub-barrier region £ < £. or & > £, where

£, = £[(2p + 1)/w]}’?, and expanding all quantities at z = 2, in powers of 1/n,
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we come to the finai result. tHlere we present only the expression for the coefficient of
the asymptotics at the origin:

Xpi(F) = g, R-UHIDpdet rool) (3.1)
g3\ 14 12
Cnt = (“(P!F) (2xw)P/? 2] exp{ -[ndy + (2p + 1)J;]} (3.2)

(the tilde indicates that this expression is approximate and consists only of two terms
of the 1/n-expansion). Here

s fofoie ] el - 38
0 {

I f[“}

Qulz) = [? - %u(:] B y_i] " So{z) =37+ (w — 1)z5?

(3.3)

(for further details and examples we refer the reader to appendix 1}.

Similar expressions can be obtained for » > r +» neluding the asymptotic coefficient
as r — oo and the effective range r, [18, 19]. A simple analytical formnla for the width
of a quasi-stationary state can also be obtained (see equation {A2.5) in appendix 2).

Let us consider the wavefunction at finite r» values, confining ourselves io
the nodeless states for simplicity (p =0 and n = ! 4 1). We have

i 1fa 1 1
tnn = (2og) exp(~gue®) 14 (F o+ i )n=142 4 O(a™)] (3.4)
' ] 2 3
where 8 = 2{1 — v))w™!, b = (a — Uw™! and f;*x?dz = 1+ O(1/n). This
expression Is valid 1 the vicinity of the equilibrium point zg, including the turning
points 4 = zo(1 + n~Y/2£,), The terms proportional to n=!/2 and n~! take into
account the anharmonicity corcections and considerably improve the agreement of
equation (3.4) with numerical calculations (see appendix 1).
Since the potential V(r) enters into equations (3.2) and (3.3) explicitly, we can
easity analyse how the 1#(0) values depend on the potential modifications (e.g. see [18]).

4. A few model potentials

The above expressions are asymptotically exact as n — oo and p is fixed. However,
in applications the case if n ~ 1 is the most frequent. It is not obvious beforehand
how useful the 1/n-expansion is for small quantum numbers. Below we consider some
examples,

(a) For power-like potentials

N
Vir) = %’ N> —2 (4.1)

we have E _;(g) o« g2/\¥*+2) and ¢ ,(g) o« gt+3/D/AN+2). therefore, it is sufficient to
put g = 1. This case corresponds to

z¥ A=Y N -1

. — — p2/H{N+2)
N FTE+DI(N-k=2)!

Lo =




The 1/n-ezpansion in gquaniym mechanics 193

and the energy expansion is

E, = %nzm{ﬂu}(nﬂ + &, + oy + .. ) (4.2)

n n
where oy = 1+ 2N, o, = (2p+ 1)/(w — 1) and

(W= 2w-1)
48(N +2)

g, = [(Ep + 1% (w® +w? ~ 12w+ 12) ~ é— ('wa + uz]] (4.3)

withw = (N42)1/? ¢ = —3(N—-5)(N+2)and r = 2+ LN -1)}N-2)(N-3)and
elt) = @ nd(W+/IN+2) (note that the coefficients e, are independent of the quantum
number n). For —1 £ N < 4 the coefficients a, decrease rapidly as k increases. At
N = ~1 (the Coulomb potential} and N = 2 (the harmonic oscillator) all @, = 0 for
k > 2, and the series (2.3) is truncated and coincides with exact solutions:

(4.4)

[ ~1 it N = 1
o= 20%2p+1+3/2) fN=2

Let us now investigate the accuracy of the asymptotics (3.2). For power-like
potentials a comparison of equation (3.2) with numerical calculations is given in
table 1. BEven for the ground state ! = 0 the accuracy of this simple expression is
surprisingly high, especially at N = 1 and N = 4 {anharmonic oacillator). Note that
In this case coefficients ¢, ,_; change by many orders of magnitude:

const x a"nf
cl’-l-,l"l—l Pl i — Do (4-5)

(na)!

where 0 = 2/(N+2), = (IN-2)/4(N +2)and 0.368 < 2 < 0.737 for —1 < N < oo.
The factorial decrease in ¢, ,_, as n increases is due to the centrifugal barrier.

Table 1. The accuracy of the 1/n-expansion for ¥{0) with power-like potentials.

i N= N=0 N=1 N =2 N=4 N=238

0 1.0209 1.0280 0,8952 09803 0.99002 1.0882
1 1.0104 1.0146  0.89977 09898 0.99844 1,0731
2 1.0070 10098 0(.,9884 0.9931 1.00G19 1.0598
3 1.0052 1.0074 05988 0.5948 1.00070 1.0502
3 1.00356 1.0050 0.98993 D.9963 1.004 89 1.0378
10 1.0018 1.0027 08997  0.9981 1.00072 1.0232
20 1.0010 1.0014 0.9998 09950 1.00048 1.013i

Note: The values of the ratio & /en; {n = [ + 1, = 0 states) are given in table 1.
The coefficients €,,; were calculated using equation (3.2) and the ¢, by solving the
Schrédinger equation numerically. The case of V¥ = 0 corresponds to the logarithmic
potential V(r) = glnr,

Thus, for power-like potentials the accuracy of the asymptotics (3.2) with p =0 is
high in-a wide range of N values but lowers as the number of nodes, p, increases [19].

{(b) The funnel potential
Vir)= _E + I (4.6)

r a2
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is frequently used to describe quarkonium and multiquark systems (e.g. see {23, 24]).

Here v(z) = 2~} -z, R = (xe®}'/? and w = [(1 + 323)/(1 + 23)]""*
determined by the equation

, and z, is

(4.7)

The firat three terms in (2.3} are determined in this case explicitly [{12]. A comparizon
of the 1/n-expansion with the resitlis of numerical computations is presented ir table 2,
where
1 1
{S} = ¢4 C{I}H 4., +C["};;;-- (4.8)

The Schrodinger equation with the potential (4.6) was preliminarily transformed in
advance {r = const x p) to the standard form

d2y_, A i+ 1)
n A - = 4.
dpi + [c + P P pz U g ( g)
which determines the eigenvalues { = ¢ () = 21/3g%/3E_,. Here
[@do=1  wyp)=cud® +. 2 o0 (410)
0

Table 2. The accuracy of the 1/a-expansion for the lower levels in the funnel
potential,
15 1P 25 il 2P 35
k (r=1) (n = 2) (n=2) [n = 3) (n=23) {n=23)
) Q.605 23 2.269 24 2.269174 3.38763 3.38761] 3.387483
1 0.996 34 261717 3.313 05 4.368 76 4.32103 4.94330
p: 097232 2.61144 3.284 76 J.69578 4.30275 4.894 43
3 3,979 85 2.61101 3.246 27 3.69537 4.29871 487627
5 C.980 29 2681114 3.231 82 3.59560 4.29692 4. 85851
exact Cni 0.980 37 2.61113 3.228 85 3,695 60 4.29670 4 84209
Cni 2.0833 0.8970 1.6634 0.3103 1.0701 1.5362
Ert f Cni 0.9977 0.9676 1.40 0.9983 1.22

Note: The values of CE.‘:} {ace equation (4.8)) are given for 2Af = m, = 1.84GeV,
x = 0.52 and a = 2.34GeV™!, which corresponds to the Coulomb paramster
A = E[EME}”:" = 1,37821. We obtained the exact cigenvaluex { by solving the
Schrodinger equation numetically (see also [25]). The coefficients cyy for p — 0
correspond to the normalization condition in (4.10).

We see that the description of the energy spectrum using the partial sums of
the 1/n-expansion is fairly accurate for the funnel potential. The accuracy grows
with / and it is especially high for nodeless states (15,2P,...). In the latter case only
three terms of the 1/n-expansion ensure an accuracy of one per cent in the energy and
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(0} computations and properly reproduce the charmonium spectrum if equation (4.6)
with Cornell potential parameters [23] is used. What is important is that the above
expressione make 1t possible to easily perform the calculations for other potentials
arising in QCD.

(¢) For the Yukawa potential, V{r) = —r~lexp(—pr), we have v(z) = e""z~!
and ¥ = n’y, with 4 the screening parameter. The dependence of z, and €(® on v is
determined from the equations:

v={z? 4 z)e* €0 = (2 — 1) %", {(4.11)

In this case v, = 2! = 0.736 and v, = 0.834. As v — v, the coefficients {*) acquire
singularities,

€9 = ¢o + o (v~ 1) + e, — )24 ...

(4.12)
W =ch el -4 @y, —0)

with ¢¢*)(v -» v,) — co for & > 2. Therefore, the 1/n-expansion is of no use in the
neighbourhood of v = »,. However, for ¥ > v,, when the equilibrium point z,(v)
moves intc the complex plane, the 1/n-expansion is applicable again. As in the case
of the funnel potential, only three terms of the series (2.3) provide an acceptable
accuracy in energy calculations for a quasi-stationary state, and the greater the value
of I the higher the accuracy (see figures 1-3}.

Ent
0,2 =

Q1

Figuire 1, The Yukawa potential (v, = 0.83996 and e, = 0.0836}). The reduced
energies e, refer to nodeless states with [ = n ~ 1, The full curves correspond to
exact solution and the broken curves to the first two terms in the 1/n-expansion.
At [ = 10 and | = 30 these curves coincide with the full curves {on the scale of this

figure).
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Figure 2. The same as in figure 1 near v = v,. The full, broken and dotted curves
correspond to the sum of one, two and three terms of the 1/n-expansion {2.3).

(d) The exponential potential is frequently used in nuclear physics. In this case
v{z) = e~ and the equations are

y = zle~* % = (g1 — 2% (4.13)

and v__ = 1.083 and v, = 1.344. The energy curves are similar to those in figure 1.
(e} For an arbitrary screened Coulomb potentiai

V()= L (:} flz) = (‘;!)

fiz® (4.14)
k=0 '

with z = ur, f(z) = zv{z), f; = 1 and p the screening parametert, as v — 0, we ges

1 1 |
Ty =¥+ §f1u5—§f3u4+ E{f,,-i—ﬁff)us%—... {4 15}

1
1
€0 = ~1 4 2f,v— far? + Ef:,u"*

t Actually, we can write any potential V(r) in this form (cf equations (4.14)} and (2.1), where R =
and g = M/ ). For one thing, the screening functions f(z) = ™%, zf{e—1), (1 +x)=% and (1 - =?)
correspond to the Yukawa, Hiilthen, Tietz and funnel potentiala. However, we assume in subsequent
formulae that the potential is Coulomb-like as r — 0, since we set f(0) = fo = 1.
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0.02F—

0.0

I i

0.3 ¥ 0.9 o,

Figure 3. Vaiues of ¢ = n?T',; for states with ! == n — 1 in the Yukawa polential.
The full curve for [ = 10 corresponds to. the exact solutien, the broken curves ({ = 3
and 10} to the first twe terms of the expansion and the full curve for 49} ta I = oo.

1 1
BT (f4 +3f§)l-"{+ ﬁ (fﬁ -+ EUfﬂfa)HE + ...

; | | (4.16)
£1) = qﬁ.fﬂuﬂ + Ef:,uh Z (2f, +3f30 + ..,
I 1 1
e?) = Efa“'a T (117, + 12f§)u4+ . e = T fot+. .

Since €l%)(1) is proportional to fry1 v¥* Jor k > 1 and as v — 0, the 1/n-expansion
rapidly converges in this region. On the other hand, at v ~ v,

w=cdM4 2oy =T 1F b 612+ O(8)] (4.17)
where
3 prir 2 piry 174 2.0y 174
. 2(z° f*"' + 32* f }] = _ 2%y (4.18)
f-zf v

§=1-~vfv, =0, v=35f~2z*f and all functions (f, f' = df/dz, etc) are taken at
point # = z, determined by the equation

F—zf —22f"=0 or ' =0. (4.19)

The coefficients of the singular terms in equations (4.12) and (4.17) are closely related
to each other: b = 2¢7? and ¢, = 2c5(v, /28)3/2. We also note that

del?) d?<(®) 2
dv? = f—zff — 22 :==n'

(4.20)
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From equations (4.12) and (4.20} it follows that v = v, is a singular point for
the function e®)(v) since d2¢(?)/dy? — co. The quantities z, and 2z, in (4.17)
correzpond to the stable and unstable equilibrium points in the effective potential,
which includes the centrifugal energy. These points coincide at v = u, and then,
for v > u,, move into the complex plane. Such a solution has no physical
meaning in classical mechanics, but i quantum mechanics it allows calculating,
within the framework of the 1/n-expansion, the position and width of Breit-Wigner
TesOnances.

5. The Stark effect in a strong field

We discuss here the application of the 1 /n-expansion to this problem, restricting
ourselves to |0,0,n — 1} states of a hydrogen atom. The states have no ‘radial
excitations (in parabolic coordinates { and ). In the limit of » — oo the classical
equilibrium potnt (€, 7o) and the energy F are determined by the system of equations

dly dl. | 1
_JEL - -d_?:; =0 U (&) = Uz} = 4 E B+ 8 =1 (5.1)

where £ = r+ zand § = r — z are the parabolic ccordinates, 8. the separation
constants, and U; the effective potentials [26]:

- ﬂl mi — 1 1 L ,Bg m: -1 1 _
U, (£) = ~5 t e + 3 &€ Uy(n) = ~Set g T Z En (5.2)

(we use atomic units}). Substituting equations (5.2) nto (5.1), we arrive at a system
of five equations, Their solution can be considerably simplified if we take mto account
that for = 3 1 the Bohr atom model is applicable. The state 0,0, m} corresponds to
a circular electron orbit perpendicular {o the z axis. When an electric field £ is turned
on, the orbit is shified along the z axis and changes its radius, remaining circular.
From the conditions of equilibrium of forces acting on the electron in its rest frame
we get

3

£=—zr" pr3 = vip! pu=mn E=iv?—rt+ &2 (5.3)

where p = (r? — 7%)!/?, Performing the scaling transformation

p— nr v— % c—¢ - i"=9E  F=n% (5.4)

and substituting r = n?(1 — 72)7%, we finally arrive at the equations:

Tl - ¥ =F | (5.5)
0 = {1 - 21 + 37)

(5.6)
) = (1 - P11+ 3r)H2 + (1 - 8r)! /0 - 2],

The higher-order coeffictents (¥) can, in principle, be found analytically, butl
the expression for (2} is already cumbersome {14]. We have calculated el*) numerically
via the recurrence relations described 1in [17). As long as 0 < 7 < 1/3 (or
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F < F, = 2239 = 0.2081), all the (*} are real. In this region the 1/nr-expansion
determines only the Stark shifts of the levels. For F* > F, the root of equation (5.5)
moves into the complex plane:

T = %:I:id(F_F.)lf:_l_.“ {(u}=ft+ﬂ'lf—ﬂ'=f3’!2+... (5'7)

where f = 1 — F/F, — 0, d = 35/22-%/2 = (6889, ¢, = —253~5 = —1.0535, ¢, =
0.0176 and ¢, = 0.01656. This threshold singularity is connected with the collapse of
two equilibrium points (stable and unstahl¢2 and correspeonds to barrier disappearance
in the effective potential I/,(n). Since the ¢*){F) are complex-valued for F > F,, this
offers the possibility of calculating within the 1/n-expansion not only the shifts but
also the widths of atomic levels.

Note that the widths of atomic states for F < F, can also be found if we continue
the wavefunction of the type (3.4) into the sub-barrier region and calculate the barrier
penetrability. Here we give the final result for the width of the 10,0, n — 1} state:

2211 nn-z

T, = 7y P8 exe(—nd(€)] (5.8)

where I', = ['(®0=-1X¢g)

3

—_ “ _ wl
¢_2|:=+3(1-—z=) tanh z] 4+142in2

the pre-exponential factor is

6= (1) (1= it - Y

X exp{—(l — iﬂm 2- (1432 (1~ 3-:-)”?]} (5.9)

2= (1-30)%1 - ! Dz

and 7 = r(F) is determined from equation (5.5).
In the weak-field region, F' € F,, we have the following formula:

(o) ) oo
r“_n!nﬂ expi —n 3F+lnF+4F 2F | 3n+O(F) (5.10)

which is asymptotically exact when F — 0. Taking into account expansions (A2.14)
and (A2.15) from appendix 2, we can easily see that, as F/ — 0, equation (5.8) assumes
the form of equation (5.10) with an accuracy of O{1/n).

The calculated complex energy eigenvalues £ = £, — i['/2 for different states
|n;, g, m) of a hydrogen atom are listed in table 3, where 1/n denotes the results
of the 1/n-expansion and HPA marks the values obtained by perturbation series
summation via Hermite-Padé approximations [15]. The agreement between different
computational methodas is fairly good.

The results for j0,0,n — 1} Stark resonances are presented in figures 4 and 5,
where the curve n = co corresponds to the first term ¢ in the 1/n-expansion.
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Table 1. Energies and widths of the hydrogenic states |n; a2, m) in an elactric field
£.

il P .,

{0,0,n — 1}

n F ~ Computational
methed

1 0.1  1.05484 4 i0.01454 HPA
1.054836 + i0.014538  [28]

1 05 1.254i0.55 HPA
1.246 4 10.548 1/n

3 05 1.224+4i0.317 HPA
1.22383 4 i0.31685 1/n
1 1.0 1,248 4i1.294 1/n
1,2487 + i1.2936 [29]
3 10 1,27891 +i0.B3875 1/n

10 1.0 1.2851+4i0.6738 HPA
1.28518 4 i0.67388 1/n

E?_'l‘ -'1-;1, ﬂl> states

n £ {au) F 2 105" Computational
method

¥  1.8x10"Y 01125 492402 2283 HPA
4.9239 292 1/n
4.9240 2.282  {30]

11 1.0x 10~%  0.1464 10.7T13 2.83 HPA
10,7128  2.42 i/n
10.688 2815  [30]

15 3x10-% 0.1519  14.577 1.35 HPA
14.5766 1338 1/n
14.5771 1338  [30]

Note: Here ¢ = 2n2(E, —iT'/2), F=n'f,h=e=m. =1 and v = {--EE,-}'”E; for
a {ree atom (£ = 0), v = n,

Note that in very strong fields the Stark shifts change sign. For further details we
refer the reader to {14-16, 27), where the complex-valued energies £ = E, ~ il'/2 for
different {n,, n,, m) states were caleulated and compared with the experimental data
on the photoionization spectra of H, Rb and Na atoms (for one thing, scaling relations
for the Stark resonances with energies close to the ionization threshold £ = 0 were
obtained in [27]}. The dependence of the Stark widths on the electric field strength is
almost linear for F > F, {see figure 5 and [13-16]). A theoretical explanation of this
is given in Appendix 3.

Other theoretical approaches to the problem of Stark resonances in the presence
of a static electric field have been developed in [28-34]. The recent paper [34] contains
a detailed analysis of the photoionization cross section of atomic hydrogen in terms of
the sum over resonance contributions.
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1 2 ysn=1 3

!

n=3

n=10
n=230

(= -

Figure 4. Stark shifts for the [0,0,n — 1} states of a hydrogen atom, e =
2n? Re EA™"=1} We use the reduced variables (5.4), and F, = 0.2081 i
the classical ionization threshold [14].

1.0

0.5

0 F, 0.5 198 F

Figure 5. The electric ficld dependence of the reduced widths, [{00:n—1) — -2,
for the |0,0, n — 1) states in hydrogen. Full curves correspond to exact solution [15],
and broken curves to the sum of two terms, (Y +¢(1n~1, of the 1 /n-expansion {2.3),
For n > 10 the broken curves coincide with the full cnes.

6. A hydrogen atom in external fields

Here we restrict ourselves to the case of parallel eiectric {£) and magnetic (H) fields
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and to states with m = i — 1, that is, states with the maximum possible value of
the magnetic quantum number m. The parameters of the classical electron orbit are
determined from equilibrium conditions similar to (5.1) and from the quantization of
angular momentum.:

1
== p(p, — 4,)pdp =mh p=uv+iHXT. (6.1)

By means of the scaling transformation
F=n% B=n*H v=1i/n r = n¥F ¢ = 2n’E

we introduce reduced quantities F, B, ¢, etc that remain finite as n — oo {the tilde
over r and v is omitted below for simplicity). The equations for the classical electron
orbit are

3

F o= —zr pr=% — Bv = wip ! plv + %Ep) =1

(6.2)
p=(r? - 22)/E=4(1- Friyie,

Excluding velocity v, we obtain the equation that determines the radiug of the
equilibtium orbit, r = #o(F, B):

r(1- FIY?(1+ 1B =L (6.3)

The first term in the 1/n-expansion, {9 is equal to the energy of the electron in
this orbit, and the second is determined by small oscillations about it,

2
O o= S+ B

PFa To To (6.4}
1) = (2n, + 1wy + (20, + 1wy — 2(ny + 7y + Dp5 |

where ny + ny + 1 = rn—[m|, 7y = 0,1,... are oscillater quantum numbers, and
the frequencies are

11 0 F? A S
l.’..-J‘L: = [r_ﬂ + E B? + (-F— -+ 3F=HErﬂ -+ Z Bq) ] . (65]
0 0

Higher-order terms in the 1/n-expansion (k > 2} take into account the anharmonicity
of the effective potential U(r) and are computed via recurrence relations. The effective
potential U/{r) has a minimum only for fairly weak electric fields, & < F (B). At
F == F_ the frequency w, tends to 0, which corresponds to the collapse of two classical
solutions. Therefore, in this case equation (6.3) has a double root, and the parametric
equation for F, = F,{B} is

p = r (1 2)

9a—11/2;1/2 t\** 1
B =23 l (1-—1) m

(6.5)
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Figure 6, The classical ionization threshold F.{B) (atomic units).

with 0 < ¢ < 1. Here t = 0 corresponds to B = 0 and F,(0) = 2!'2373 coincides
with the value of the classical ionization threshold for the Stark problem (see the
preceding section). Nurnerical calculations involving equations (6.6) give the curve
in figure 6. For F > F,(B) the radius of the classical orbit and the coefficients ¢*)
become complex-valued.

Some of the results obtained are presented at figure 7 (for states with »; = n, =0
and m = n — 1). Full curves represent the real and imaginary parts of the reduced
energy. The real and imaginary parts of the classical energy (%)(F) are shown by
broken lines. We see that qualitatively Ree(®) represents the dependence of the energy
on the field. As for Imel®, it iz a rough approximation, that is, summation of series
(2.3) is necessary in this case,

The above examples clearly show that the 1/n-expansion is an effective calculation
method, especially for Rydberg states (n » 1). The investigation of such states,
including those in external fields, is a problem of interest to atomic physics at present.
Due to the development of laser techniques, the region of strong fields, which are
comparable with the atomic field inside an electron orbit, becornes accessible, In
these cases the 1/n-expansion is the most suitable method, since it does not imply
that the perturbation of the free atomic Hamiltonian is small.

7. The 1/n-expansion and coherent states

As seen from the examples considered, the 1/n-expansion has a sufficiently high
accuracy for n ~ 1 (in the case of nodeless states, p = 0). Let us give a qualitative
explanation of this fact. It will be shown that the above states are closest to classical
mechanics. Since the firsi term £?) in (2.3) corresponds to & classical particle at rest
at the minimum of the effective potential, the high accuracy of the 1/n-expansion is
thus explained by the suitable choice of the initial approximation,

For states with { = || = n— 1 in a hydrogen atom we have [268] 7 = n{n + 1/2)
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.5

1.0

l .
G

Figure 7. A hydrogen atom in parallel external ficlds: (a) the values of € =
91? Re En, and (b) ¢ = n?T, for the state withay =nz =0andn=m+1=10.
The values of the reduced electric field F = n*£ are placed at the curves (h = £ =
me = 1, atomic units),

and 2 = [(2n — 1}n?]~?. Hence,

B /9 +13\1? h(2n+2>1”
—_ — = - . 7.
Ap, Ar 2(2::—1) AP B2= 3\ T 1 (7-1)

For n % 1 such a state, corresponding to a circular electron orbit perpendicular to
the 7 axis, minimizes the uncertainty relations of the radial and transverse components

(in telation to the orbit plane) of p and r.
For all other states, Ap; Ag; exceeds /2. Thus, if n — oo and the quantum
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numbers p = n_. and g = { - |m] are fixed,

ﬁp,&r:h(p+l+ﬂ—1+...) &p,&::h(q+l+b—1+...) (7.2)
2 n 2 n

where a; = ;{1 ~3p(p+1)] and &, = 3(2pq+p-+¢) — 2(4¢% - 1). If, on the other hand,
p and ¢ are both large, then Ap; Ag; &x n. For example, for ni-gtates in the potential
(4.1) we have Ap, ~ ¥ (N+2) and Ap w n?3/(N+2) gnd

Ap, Ar = hnf(p) p= [+ 1)]¥*n ! {(7.3)

for n 2% 1 and 0 € p < 1. The results of numerical computations of f{p) for the power
potentials (4.1} are given in figure 8, which shows that as n — oo the uncertainty
product ApAg ~ h only for [ close to I, = n — 1, that is, at p ~ 1. This
makes the semniclassical approach to such states natural, In other cases the quantum
fluctuations of the orbit radius increase without limit as n — oo, with the result that
the notion of a classical orbit becomes meaningless.

%) &
o o
H=4
H\.
4.8 “2'-
B 1
0.6 - 3
'-LH ~..
‘
oy,
N ol AN
0.4 - i
i
N,
a
"b,“
.2 ‘-.
l | ] -
o] 0.5 1.0 D

Figure 8, The function f{p} in equation (7.3) for power potentials. The values
of N are placed at the curves. The broken curve ¢orresponds to N = oo, that is,
the square-well potential.

In conclusion the following should be noted. For the harmonic oscillator
the Glauber coherent states ja} were introduced [35] for which Ap Az = /2 for any a
(the average number of quanta n = |«|? can be arbitrarily great). The coherent states
demonstraie most vividly the limiting transition from quantum to classical mechanics.
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This approach, however, has a shortecoming: the coherent states can be constructed
only for special models. On the other hand, the nodeless states and the states with
P, ¢ < n are easily consiructed via the 1/n-expansion for an arbitrary potential V(ir)
and in a number of problems without spherical symmetry (e.g. for the problem of
two CUoulomb centres [20]). Such states minimize the uncertainty relations as n — oo,
and in this respect are similar to the la} states. However, there is also a difference:
the states [a(?)} are nonstationary, while the states discussed above are stationary
because we are not considering the motion of a wave packet along the orbit but
averaging over rnany turns. To consider such motion in detail we must introduce 2
superposition of states with different energies £, , which unavoidably results in a rapid
smearing of the wave packet for systems with a nonequidistant spectrum. However,
such detailed description of the motion of the particle is not required in many cases,
al least not for the stationary problemns of quantum mechanics,

8. Higher-order terms in the 1/n-expansion

In conclusion we discuss the asymptotic behaviour of higher-order terms in the
1/n-expansion. It is well-known that perturbation series in quantum mechanics
and field theory are divergent owing to the instability of the vacuum state when
the coupling constant changes its sign (Dyson’s phenomenon [36]). In the case of the
1/n-expansion a numerical study of the asymptotic behaviour of (*) as k — co was
performed,

It was found that

¥ bla* k®  as k — oo (8.1)

where 2 and J are computable constants (for their computation 40 to 50 coefficients
e(®) proved to be sufficient). As an example, in figure 9 we give |a(#}| for the 0, 0, n—1}
states in the Stark effect problem. As long as F' remained smaller than F, = 0.2081,
the parameter a was positive. When £ — F,, the parameter a{F) acquired a power
singularity. This accounts for the above-mentioned sharp decrease in accuracy in
determining the energy via the 1/n-expansion method at F = F,. When F > F,
the parameter a{ ) is complex-valued.

Owing to {8.1} the radius of convergence of the 1/n-expansion (2.3} is zero, and
the sum of the series (2.3) has an essential singularity at 1/n = 0. However, this series
can be successfully summed via Padé approximants, which determine both the Stark
shift and the level width {in the region 0 < F < F,, where ¢(*)(F) < 0, Padé-Hermite
approximants [15, 16] can be used).

Similar results were obtained for the Yukawa and other short-range potentials. In
this case it can be shown that

™

Tl
06

(H. oy -3/4
a(v)~ A ) v— v, (8.2)
2 f

i 3/4
s _) (8.3)

where ¢ is the same coefficient as in equation (4.18), and the screening function
f(z) = zv(z). Therefore, the higher-order terms in the 1/n-expansion, e* (), grow
very rapidly as v — v, which agrees with the results of numerical calculations (the
derivation of equation (8.2) and other details will be published elsewhere).

A=

= (,1997 (1 +
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Figure 8. The dependence of [a{F)| on F = n'£, where a in the paramster of
asymptotics {8.1).
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Appendix 1. The 1/n-expansion for wavefunctions

Here we consider in greater detail the 1/n-expansion for the wavefunctions assuming

that p = 0 {nodeless states). Employing the method developed in [17], instead of
equation (3.4) we obtain

oo () ) o o))

where x, = x",ﬂ_l(r),

hy = 1ag® + B¢ hy = 20,5+ 15,84 + Le 8 + d; ete (AL.2)

g =—Ay &y b= —AEI}zﬂ a8, = %nz

(Al.3)
2



208 VD Mur, V5 Popou and A V Sergeev

Here z, and w are defined by equations {2.2} and (2.6), the A_{f‘} are coefficienta of
the expansion of the Jogarithmic derivative of the wavefunction and are calculated
via the recurrence relations given in [17], and the coefficient d, is determined from
the normalization condition

o0
f X(r}dr =14 0(n7%). (A1.4)
4 :
Expressing the A_E-i} in terms of the v, introduced by equation (2.7), we finally obtain:
:1_2{1—-1:1) B_ﬂ-—l . _4(1—1:1)2
2w 7w T w S T
b = 1142 Ej-n-—c . = 25-3£+51) (ALS)
4 = 240 +w?c,) 4 101a? — 962 — 3¢
L 36

where ¢ = 15(1 — v,}. These equations make it possible to easily find the first terms
in the expansion {Al.1) for an arbitrary potential V(r). The same method can be
used to find the next terms in the 1/n-expansion, but explicit formulae become too
cumbersome and it has proved more convenient to employ the recurrence procedure
described in {17].

To illustrate the above remsoning, we consider several examples for which
compatison with exact solutions is possible.

(2) In the case of the Coulomb potential, v(z) = z-1 v, = 2(k + 3}, 2, = n? and
w = 1, and equations (A1.5) yield

a=1 b=e,=0 8, =3 b =—1 d, = —25. (Al.6)
On the other hand, the exact wavefunction of the state with { =n —1 is [264
Xalr) = ot exp( -2 )
" "+ (T(2n)) 1/2 n
exp{—£2/2 3 § ¢ 1)1
= (i;]fti ) {1 M :fﬁ T Gs B 54 ” 43) H} (AL.7)
(r = n2(1 4+ n~1/2¢)), which fully agrees with equation (Al1.1) and (A1.6).
(b) For the harmonic oscillator, v{z) = —?/2, v, = ~1/3, v, = 0 for k> 1,

2z, = n'/? and w = 2. Combining 2l this with (Al.5), we arrive at the same
values {A1.6) for all the coefficients, with the exception of d; = 1 /48, which coincides
with the expansion of the exact wavefunction for n 23 1:

Xn(r}= (r(ﬂ _E 1;2))”2"“ exp (—;) .

(c) In the case of the funncl potential (4.6), all the coeflicients in (Al.1} can easily
be expressed in terms of the classical oscillation frequency w:

u:i(u+.1_) P ) S VA B

2 W 202
— L 3 p: AlS
by = =gy (W' +16w% + 2* 4 16w — 11) (A1.8)
1
c1=—1m4{u—1)1{w2+2w—11)
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Figure Al. The accuracy of the 1 /n-expansion for the wavefunction of the 2p-state
(rn = 2) in the Coulomb potential.

withw =1+vi—Ivi+.  asv >0, andw =3(1 - 3»~ 3+ ) as v — co. Note
that the case of v - 0 corresponds to the Coulomb pﬂtential and that of ir — oo to
the linear potential, that is, N = 1 in equation (4.1).

(d} The Teitz potential [37] serves as a good approximation for the Thomas—
Fermi model in neutral atoms. For this potential the screening function f(z) in
equation (4.14) is (1 + z)~% and the exact solution of the Schrodinger equation with
zero energy s known {38]. For one thing, for nodeless states (n > 2) the normalized
wavefunction s

(4n-3) 1Y% o
X _(2n}!{2n~—4)!] (1+ )T

(mexp(=ED\[, (€, ) L
Ce) (43

] 6 4 __ l
+ﬁ{f 3£ 37)“-1-...]. (A1.9)

The dependence of z, and %) on v is determined frem the equation

z(1 + 3z) £0) _ (z—1)(1 + 33}
{L+2)3 (1+2)°

Thus, () = 0 at 2z, = 1 where ¥ = w = 1/2, vy = 11/12, v; = 13/18, elc,
with the result that a = 3/4, a, == 3/16, etcf. In all the cases considered above, the
1 /n-expansion for nodeless wavefunctions has the structure of equation (Al.1).

¥ =

(A1.10)

{ Note that for states with E = 0 the formulae for the cocfficients &, by, etc have a form mnjcwhat.
different from (A1.5). The reason is that the coupling constant g in equation (2.1) in this case
explicitly depends on a (see equation (2.9)).
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Let us now examine the accuracy of this method. We start with the Coulomb
potential. In figure Al the full curve cotresponds to the exact wavefunction of the
2p-level and the broken curves 0, 1 and 2 represent three successive approximations
to (Al.7), with the label ‘0’ corresponding to a Gaussian packet. e see that
already the term proportional to n—-1/2 tonsiderably improves the agreement of
the 1/n-approximation with the exact solution, and including the term proportional
to n-1 ensures an accuracy < 5% with a sizable range of r values. Similar results
have been obtained for the funnel potential [19].

In some cases the Schrodinger equation with zero energy can be solved analytically,
say, for the potential

Vir}= %g?ri“ — Agre! a >0 (Al.11)

which for o > 1 is a potential of the Higgs type, at a=1 is reduced to the harmonic
ascillator, at o = 0 to the Coulomb potential and for 0 < @ < 1 is similar to the funnel
potential. The wavefunction with E=0,p =0 and angular momentum { = n — 1 has

the formt:

x.(r) =c,r" exp (—% r“+1)

_ 9g (2n41}/2(xt 1) a4+ 1 172
‘n = (ﬂr+1) [F((En+1]/(&+1])]

with A = n+ a/2 in (Al.11). As n — oo,

a® —da 41 i

=14 28(a + Ui + O(ﬂ:). (Al1.13)
For 0 € a < 6 the coefficient of 1/n is small numerically, so that formula (3.2) is
accurate within one per cent even at n = 1. Near the maximum point, r = ry =
(n/g)1/(*+1) the function x,(r} assumes the form of (All) with w = 1+ o and
(€)= 32+ o - 2™

Up to this point we have studied nodeless states, for which the Gaussian function
in equation (Al.l) corresponds to the ground state of a one-dimensional oscillator
describing zero-point fluctuations in variable {. For states with p # 0 this function
is replaced by the wavefunciion of the pth excited oscillator state, which leads to
a generalization of the above results to states with nodes, provided that p < n.
However, the accuracy of the 1/n-expansion diminishes as p grows. For instance, for
the asymptotic coefficient at zero in (3.1) we get

ks

L]

(A1.12)

r
-

Cn

t
=

l=1+

nl

k
+ ;:% + ... (Al.14)

-]

whete n — oo, p = 0,1,... is fixed and &, = 1{p® — 37) for the harmonic oscillator
and k; = £(7p* +3p+ +) for the Coulomb potential (these values of k; are obtained
from comparing equation (3.2} with known exact solutions). We see that the case of
p = 0 is special because the correction term proportional to 1/n is small numerically.
It can be verified that the same is true of the subsequent coefficients kg, k3, - . -

} Here if we formally put n = [+ 1 =0, we arzive at the one-dimensional problem. For indtance, at
o = 3 from {A1.12) we obtain the zcro-energy solution Yo{x) = conat X exp(—z* /4) corresponding
i the potantial ¥{z) = (z® - 3£7)/2.
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Appendix 2. On the widths of sub-barrier resonances

Formula (3.4) for the wavefunction x,, = X, u..1(r) is valid in the classically allowed
region r_ < r £ r, and can be continued to the sub-barrier region via the WKB
methodf. To calculate the level width T, we must normalize x,(r) to one particle
in the well r_ < r < r_ and find the flux of particles leaving for infinity. Since
the quasi-classical momentum p{r)} = nP(r} « n, to evaluate the integral {Qdr
in equation (A2,1) we must allow for the correction term proportional to 1/n in
the energy ¢ {only in this case do we arrive at a formula for I', that is asymptotically
exact in the pre-exponential factor). Below we briefly discuss the calculation
procedure.
In the sub-barrier region, P(r) = i1Q(r), we have

Xn(r) =1 41:)1 o [r—ngr)]uzexp{—n j Q(») dr} (A2.1)

where
0 = iz _ 2u£r) b
- Q}- 2 o(%)
G=t -0 o
Sﬂ=r19 ur%l q2=—%
q§=2”f“)—r§ p___1+:/2 0<p<l.

Using the well-known rules of matching [26], we obtain an outgoing wave corresponding
to the quasi-stationary state:

0= gl o{{[rowi]} e

where r > r,, and D = exp(—2n f: Q(r)dr) is the barrier penetrability. Employing
the exp’ansion {(r — oo}

/Q{r dr_fqﬂ (FYdr + - fdr [r_rﬂ gﬁ:}

_ L ln{4:nw (l'- — 1) } T (A2.4)
in ra

+ Notation: ry is the minimum point of the effective potential defined by equation (2.2) and r3 and r
arc the turning points, with r— < r < ry and ¢ » rq the clasaically allowed regions and 1y < r < v
the sub-barrier region.




212 V I} Mur, V' § Popoy and A V Sergeev

we finally obtain

T, = dr E)m"ﬂ_"“e { 27& Q : Sﬂ]} (A2.5)
no t To *P " Il“"-i_'r—lr'[:. Qol ) '

To illustrate this general formula, we consider the Stark effect for |0, 0, n— 1) states.
No ‘radial’ excitations exist in this case (n, = ny = 0), and with n — oo the particie is
at rest at the equilibrium point (£,, n,) determined from equations (5.1). Going over
to the scaled variables (5.4), we obtain

3 F 1/2
P(z):(%-}-ﬂl_p _..“E)

¢ 8 7 F 1/2
P(y) = (Z+ ; -~ i; 7+ Ty) (A2.6)

ne™y {8) [x.(¥) ify_<y<y,
Y(r) = 2 X (+) :
n?, /Ty x» () fy>w

where £ and n are parabelic coordinates (& = nz, 5 = n?y} and p = m/n. The
normalization constant N ig determined from the condition

1[ 2ZoYg ”2. (A2.7)

“"3f|¢1=(:+ Jdzdy=1 N
—_— » - -—
2 d v 7Ty + o)

n

Using (A2.6) to calculate the particle flux at infinity, we find the Stark resonance
width T, = [{®0n-1),

r.{(&)=— {A2.8)
5
where
¥z 2 1f2
D=1E::'-q:n[—'/(’m2 _ 4 Fy—»f) dy} {A2.9)
¥ ¥
¥+
n+1/2 4 3,2
A = "@I“ (E) c= 0 T, = W (42.10)
n. \e To + Yo We

Note that calculating via the 1/n-expansion yields A, = (x/e)/? = 1.075.
The value of A, specified in {A2.10) is selected in such a way that equation {A2.8)
coincides with the exact asymptotic behaviour of T {£) for all n = 1,2,... (the
numerical values of A are very close to unity). The factor ¢ in (A2.8) reflects the fact
that the problem is not one-dimensional (at £ = A, = 1 equation (A2.8) transforms
into the Gamow formula; its generalization to a multidimensional case is given in [39)]).

For n — oo the turning points y_ and y, are close to each other since
the wavefunction is concentrated near the classical equilibrium point y,. Hence,
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equations (A2.8) and (A2.9) get simpler and the elliptic integral for the barrier
penetrability is expressed in terms of elementary functiont:

2 2
D= (25:13}”2(1 -:z) Exp{-- ;—;— (—el0)/2 7 4 {,ﬂ] } (A2.11)
Here
7 = g = v1—3r .
l—171
ay—df2 3
=Gy R ] e

@:ﬁf’ﬁ[z_m-m]

and 7 and ) are determined by equations (5.5) and (5.6). The pre-exponential factor
in (A2.8) is also expressed in terms of the variable r:

3
e=(1+1) T, = dmn (A2.13)

L T)(1 — 232/ 1 =37

Substituting these expressions into {A2.8), we arrive at the final formula (5.8}. Below
we give the expansions of the quantities in this formula in two limiting cases. For
F — ( we have

r=F+4F3+ O(FF) z=1-lF-Bp24
3
T, =4nn(1+ 3F +...)

(A2.14)

whence
$=2F'+mF+]F+0(F%) p=1-$F+8r24+ . (A2.15)

For I',,(£) we obtain {5.8), which coincides with the well-known asymptotic formula
for level widths of the hydrogen atom in a weak electric field {40, 41). In the other
limiting case, ¥ — F, = 0.2081, we have

fzé(l—gﬂ;f”?—}-%f+.“) z=zi—::f”4+... (A2.16)
b=ay+o, f 4+, p=8F+ ...
where oy = 1 +21n2 = 2.386, a, = 23/43%/2/5 = 1,748, 3 = (2893-42)1/8 = 6,983 and
f=1—F/F, — 0. Here the classical oscillation frequency vanishes:
wy, =Cf+ ... C = 25/431/2 = (.78 (A2,17)

which is related to loss of stability.
If we allow for (A2.16), we find that the applicability criterion for formula (5.8)
has the form (cf [39])

f 5 p=ts {Aﬂl&)

which excludes only a narrow region near F = F, for n 23 1.

t The origin of the two terma in (A2.11) is as [ollows. The first term corresponds to an energy
e = &9 equal to the rmummom of the effective potential Lz(n). The second term ¢ ney
allows for the discrepancy between the particle energy and ¢{®} owing te zero-point vibrations and
the anharmonicity effect.
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Appendix 3. The 1/n-expansion and above-the-barrier Stark resonances

As figure 5 shows, there exists a fairly broad range of electric field strength £ in
which the widths of atomic levels depend on € linearly for all practical purposest. We
immediately note that this refers to the case where the resonance energy E is higher
than the top of the potential barrier, that is, F/ > F, {in this case the widths ', are
already not exponentially small as they are in the weak-field range {40], but the Stark
resonances are still isolated and may manifest themselves in experiments 127, 31}).
Here we employ the 1/n-expansion to interpret this fact qualitatively.

Since the ¢ curves have similar shapes for different (n,,ny, m) states [14-16},
we limit ourselves to the simplest case of the state Sﬂ,ﬂ, n—1) as n — oo, Here the
1/n-expansion is reduced to the first term ¢, = £ F) coinciding with the energy
of a classical particle moving along an equilibrium orbit. If in (5.5) we go over to
the variable u = 1 — 72, we find that

u=1—— € = Ju® — 4u? (AE.I)

with the stable equilibrium point corresponding to the root u = 4g( F), which becomes
equal to unity as F — 0. From (A3.1) follow the perturbation expansions:

[ 2] L3 ¥
g =1— Z b:kFH €q=—-1- Zd:kFik (A3.2)
k=1 k=1
where
9k —2)! (9K —4)
b = PR — ) T O RIBE-2) (43.3)

We see that the energy ¢, {F) lowers as the field strength grows and remains real for
0 < F < F, (the perturbation series converge for F < F, = 0.208098...).

In the above-the-barrier region, F > F,, we assume that 4 = pe~, and after
elementary but numerous calculations we get

gin 8¢ F = (sin £)}/?(sin BE)*

P~ Sinot — (sin92)%/?
20, (Ad.4)
4 sin 24 sin 3¢ sin
"o 29y 9 g 21
€ (sin 913 (sin® 31 — Jsin“1)
with ¢ = —Ime, and 0 <t < x/9 {t =0 corresponds to F = F, and t — x/0 to

F — o0). These equations determine in parametric form the dependence of the width
of levels with n 3 1 on the electric field strength {we use the reduced variables (5.4)).
Clearly, with F — F, we have the expansion (6.7), and with F — o0,

e (F) = 2(1 = iv3) F23[1+ O(F /%)), (A3.5)

i See also [15, 16]. Note that even the very simple approximation, ¢ = @) 4+ A~ ensures
reasonable accuracy even for n ~ 1, as figure 5 shows. For instance, the error of this Approximatian
ia roughly 10% lor the level shift and only 3% for the level width at F =1 for the case of the ground
state (1/n = 1).
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Figure A2. Approximate linearity of the Stark widths (n » 1). The full curve
corresponds 10 equations [A3.4) and the broken to equation {A3.6),

For an arbitrary F the functions ¢, and ¢’ can easily be calculated via the above
equations. This gives the full curve in figure A2, which clearly shows that ¢/(F) is
practically linear for F' > 0.25. The broken curve in figure A2 represents the function

&F)=c(F — Fy) {A3.6)

where the parameters ¢ and F; were fitted via the least squares method. The resuits
of the fitting procedure are listed in table Al, where we give the parameters ¢ and Fj
(optimal in the sense of o being minimal) and the mean square deviation o between
the funetions € and ¢”,

L 172
7= {% ; [¢"(F;) ~ E(F,-)j’} (A3.7)

(the fitting interval F|, < F < F; and the number of points, L, were varied). From
table Al it follows that the widths I’ in the above-the-barrier regions are alrmost
linear functions of field strength. The same follows from figure A2, in which the worst

Table Al. The optimal parameters in equation {A3.6).

No ¢ Fa i Fi Fr, ex10Q
1 0.785 0.234 106 02081 3140 134

2 0.802 0.2526 A8 .25 1.5 0.72

3 0.803 0.2529 51 0.25 2.0 0.70

4 0.8058 0.2600 40 0.3 2.0 0.416

5 0.8101 0.2601 20 0.30 2.0 0.415

i 0.8104 0.2601 393 0.20 2.0 0.413
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approximation {No 1) is depicted by a broken curve (for this approximation & = F,
and for F & D, the function ¢(F) is sure to be nonlinear). For the variants 2-6 we
took F > 1.2F,. As a result the ¢’(F) and & F) curves coincide within the accuracy
of the diagram.

But what properties of the interaction potential are related fo the ‘linearity’ of the
T, (£) widths Let us consider a model problem with the potential

Vir)= -2 AN A3.8
)= 8y > (A3.8)
which for N = 1 and g < 0 transforms into the funnel potential (4.6) and for g > 0
is the spherical analogue of the Stark problem for the hydrogen atom. Applying the

1/n-expansion to states with l =n—131 yields the following equations.

z— ¥t =y fclz—(l—:{‘;‘r+l)(1+N;21=f+l) (Al.9)

with the first defining the classical equilibrium point zo(v}; here v = n2gt/(N+1) and
h = m = 1, The solution to equations {A3.9) is real as long as » < v,,

v, = (N + 1)(N +2)~(N+2W(N+1) (A3.10)

and enters the complex plane when v > v,. For the imaginary part of £q(¥)
equations can be derived that are similar to (A3.4) and imply that only at N =1
is the dependence of ¢ on the effective coupling constant}, A = pN+L = p2N+2,
linear, with a good accuracy, in the above-the-barner region. Since € o (A — A,)%/2
for A — A, = 4/27 and " x A2/3 for X —» oo, the dependence (A3.6) can be called
the ‘intermediate asymptotics’. Thus, the ‘linearity’ of ¢”{F} in the above-the-barrier
region is specific at N = 1, that 15, is due to the special shape of the potential, —-&£z,
acting on the atom. (Note that {or F' 2 F, there is no way in which this potential can
be considered a perturbation of the Coulomb potential.)

References

(11 Ferrel R A and Scalapine D J 1974 Phys. Rev. A 9 846
[2] Witten E 1978 Nucl. Phys. B 149 285
Witten E 1980 Phys. Today 33 38
(3t Dolgov A D and Popov V § 1979 Phya. Leit. 365 185
[4] Deigav A D, Eletskif V L and Popov V § 1979 Preprint ITEP No. 72 (Moscow: Institute of
Theoretical and Experimental Physics)
(5] Mlodinow L D and Papanicolacu N 1880 Anx. Phys., NY 128 314
Mlodinow L D and Papanicalacu N 1981 Ann. Phys,, NY 1311
[6] Bender C M, Mlodinow L D and Papanicolaou N 1982 Phya. Rev, A 25 1305
(7] Imbo T, Pagnamenta A and Sukhatme UJ 1084 Phys. Rew. D 29 1669
Imbo T, Pagnamenta A and Sukhatme U 1984 Phys. Lett, 105A 183
[8] Yaffe L G 1982 Rew. Mod. Phys. 54 407
(8] Yaffe L G 1983 Phys. Today 36 50
[10j Chatterjee A 1990 Phys. Rep. 186 243
f11] Popov V S, Valnbesg V M and Mur V D 1085 JETP Leit. 41 539

} At N = 1 the coupling constant ) = n* g is analogous to the reduced electric field F = nlE.



[12]
(13]

[14]
[15]

[16]
[17]

[18]

[19]
[20}
[21]
[22]
(23]

[24]
[25])
[26]

[27]

(28]
[29]
[20]

(31}

[32]
(39]
(34]
{35]

[36]

137]
28]
(39}

(40}
(41]

The 1/n-ezpansion in quantum mechanics 217

Popov V 5, Valnberg V M and Mur V D 1986 Vad. Fiz. 44 1103

Popov V 5 and Valuberg V M 1988 Sov. Phys, Dokl 31 620

Popov V §, Yaimberg V M and Mur V D and Shcheblykin A V 1987 Sev. Phys. Doll. 32 295

Mur ¥V D, Pozdnyalkov S G and Prmov V § 1388 Sov. Phys. Dokl 33 272

Popovy V 5, Mur V D, Shcheblykin 4 V and Vainberg V M 1987 Phps. Leit. 1244 77

Valnberg V M, Mur V D, Popov ¥V S and Sergeev A V 1986 JETF Lett. 44 9

Valnberg V M, Mur V D, Popov V 5 and Sergeev A V 1987 Sov. Phys.-JETP 68 258

Popov V §, Mur V D, Sergeev A V and Valnberg ¥ M 1980 PAys. Lett. 140A 418, 425

Valnberg V M, Mur V D, Popov V S, Sergeev A V and Sheheblykin A V 1988 Teor. Mat. Fiz.
T4 399

Mur ¥V D and Popov V 5 1987 JETP Leit. 45 410

Mur ¥V D and Popov V 5 1888 Yad. Fiz. 47 697

Mur V D, Pozdnyakov S G and Popov V S 1960 Yad. Fiz. 51 390

Mur V I, Popov V 5 and Sergeev A V 1990 Sov. Phiye.-JETFP 70 16

Mur ¥V D and Popov V S 1990 Sov. Phys.-JETP T0 975

Valnberg V M, Popov ¥V 8 and Sergeev A V 1990 Sov. Phys. - JETP T1 470

Eichten E, Gottfried K, Kinoshita T, Lane K D and Yan T M 1978 Phys. Hev. D 17 3090

Eichten E, Gottiried K, Kinoshita T, Lane K D and Yan T M 1980 FPhys. Rev. D 21 203, 313

Badalyan A M, loffe B L. and Smilgas A V 1987 Nuel. PAys. B 281 85

Badalyvan A M, Kitoroage I I and Pariysky D S 1987 Yad. Fiz. 46 226

Landau L. D and Lifshitz E M 1977 Quanixm Mechanica: Non-relaiivistie Theory 3rd edn
{Oxlord: Pergamon)

Mur V D and Popov V 5 1988 JETP Leil. 48 70

Mur V D and Popov V S 1988 Sov. PAys.-JETP 6T 2027

Franceachini V. Grecchi V and Silverstone H J 1985 Phys. Rev. A 32 1338

Benassi [, and Greechi V 1980 J. Phys. B: At. Aol Phgs. 13 911

Damburg R J and Kolosov V ¥V 1976 J. Phys. B: Atl. Mol Phys. 9 3149

Damburg R J and Kolosov V V 1978 J. Phys. B: At. Mol Phys 11 1521

Kolosov V V 1987 J. Phys. B: A1. Mol Phys. 20 2359

Kolosov ¥V ¥ 1989 J. Phys. B: At Mol Opt. Phys. 22 833

Telnov D A 1989 J. Phys. B: At. Mol Opt. Phys. 22 1.399

Alvarez GG and Silverstone H J 1989 Phys. Rer, Letl 83 1364

Alvarez G, Damburg R ] and Silverstone H J 1991 Phys. Hev. A 44 2080

Glauber R J 1963 Phys. Aev. Lefi. 10 84

Glauber R J 1963 Phys. Rev. A 131 2768

Dyson F J 1952 PAps. Hevr. &5 631

Tietz T 1956 J. Chem. Pkys. 25 787

Demkov Yu N and Ostrovskdl V N 1972 Sov. Phys.-JETP 35 66

Popov V 5, Mur V D and Sergeev A ¥V 1991 Phys. Lelf. 157TA 183

Mur ¥V D, Popov ¥V 5 and Sergeev A V 1931 Yad, Fiz. 54 950

Yamabe T, Tachibana A and Silverstone H J 1977 Phys. Rev. A 16 877

Damburg R ] and Kolosov V V 1979 J, Phys. B: AL Mol Phys. 12 2637



