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The asymptotics of large orders of the 1 /»n expansion in quantum mechanics has been found. It is shown that the coefficients
%) grow as K'a® with k— oo, and the dependence of the parameter g on the coupling constant is investigated,

1. Introduction

At present the 1/#7expansion 1s widely used in var-
ious quantum-mechanical problems, see e.g. refs. [1-
1] and references therein. We consider below the
version of the method proposed in ref. [7], which 1s
applicable not only for a discrete spectrum, but also
in the case of quasistationary states (resonances).
The energy eigenvalues which are complex 1n the fast
casec (£,,=F — 31}, can be represented in the form
of an expansion in powers of the “small parameter™
L/n,
e=¢’ 'E"—Em}-i-f"ﬂi-f' +E—{E+ 1)

—¢'—1¢" = ” L s {
where #i=r + !+ 1 is the principal quantum number,
{ is angular momentum, e=2n2E,; is the *reduced”
energy of the »n/ state, €’ =n2l",, and k is the order of
the 1/n expansion.

The behavior of the coefficients €'*? for &A1 not
only presents some theoretical inicrest, but 15 of ¢con-
siderable 1importance i1n calculating the energy F,;
with high accuracy using expansion {1}, It is known
that the divergence of the perturbation theory series
{(PT) in quantum mechanics and field theory 1s con-
nected with the instability of the vacuum state when
the coupling constant g changes its sign {the so-called
“Dyson phenomenon™, established for the first time
in QED [11] and later considered for the anhar-
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monic oscillater [12,13], Stark [14-16]} and Zee-
man {17] etfects, and other quantum-mechanical
problems).

Asa rule, the asymptotics of large orders of PT has
the form

; C
E, ~ (Fccu)!a“k"(-:ﬂ+ % +5+ )

= (m+ﬁ)!ak(g;, + %’ + ) , (2)

where F(g)=2,.F.g% =1=I(z+1) and a>0, §, a,
Co, ¢ ete. are calculable constants.

In eq. (1) the expansion parameter is 1/n (in-
stead of the coupling g), which does not enter mnto
the Hamiltonian explicitly, and the coefficients ¢
arc rather complicated functions of g, contrary to the
case of higher PT orders. So some modification of
Dyson’s arguments 1s needed, which 1s given below.

2. Asymptotics of large orders of the 1/a expansion

Using recurrence relations !, we have computed
30-50 coefficients €'’; eq. (2) for them was checked
for k= 1 and the parametcrs of the asymptotics o,
a, ... were determined numerically., These calcula-
tions have been done for the following problems: the
funnel potential

#1 See ref. [18]. The numerical methods we have used will be
described elsewhere,
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Virny=—r—"+gr, g>0, (3)

the Stark effect in hydrogen and its spherical model
(which corresponds to g——g 1n eq. {3)}, and the
screened Coulomb potential

V(ry=—r~"f(x),

where ' is the screening radius and atomic units
are used, AI=m=e=1. These examples embrace a
wide class of potentials used 1n physics, including the
short-range Yukawa and Hulthen potentials #2, the
confining potential (3), frequently used in QCD, and
potentials with a barrier.

In all the cases considered it turned out that o= 1,
e.g e~ k! The dependence of the parameter @ in
eq. (2) on the parameters in the problems is also of
some interest, and ¥ =#n~u is the right parameter for
the screened potentials (4), with x=g'"? and
f(x)=1—=x% in the casc of potential (3). Finally,
v—nZe'?=F"'Y? for the Stark problem, where F is
the “reduced™ electric field {(F=&£/z,, £15 an external
field and ¢, ~F 2~ 1~ is the atomic ficld in the elec-
tron orbit with principal quantum number 7).

The 1 /n expansion 15 construcied around the clas-
sical equilibrium point x,{») in the effective poten-
tial including cenirifugal energy. Here we confine
ourselves to the /=n— 11 states with no radial
nodes. The quasiclassical momentum 1%

X=r, (4}

1
p{r}=E[—§ﬂ(y,v]]1”,

p=y =2y 'fluy)—e'", (5)

where y=r"?r and €' is the energy of a classical
particle at rest at the equilibrium point, x,= #yy. The
quantities xo (¥} and €2 (#) arc determined by the
cquations [ 7]

F:_x:f_g:zf"? Eiﬂ}=(*rfrf}1_f-llft:.m' (6)

We assume the potential 10 be of the form shown in
fig. 1. The widih of the highly excited, n= 1, levels
15 {(within exponential accuracy)

* When f{x)=cxp(—x) and x[expi{x)—1]""in eq. (4), we
ohtain the Yukaws and Hulthen potennials, frequently used in
nuclear physics;: fix)=xcxp( —x?) corresponds 1o the
Gaussian potential, f{x)=1—x? to the funnel polential (3},
¢tc. In fact, an arbitrary central potential ¥(#) can be written
in the forrn of' eq. (4), if the condition 0< /{0) < oo is ignored.
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Fig. 1. An cffective potential L7 (qualitatively).

I, =constXexp({—2n(in”,
0= | ay oty v 12, (7)

where g, ¥2 are the turning poinis, see fig. 1, and o
depends on the problem considered. Supposing an-
alyticity 1in the vanable A=1/n and usimg the dis-
persion relations 1n A, we obtain

XY kg ke [1 +O(1/k)], k—oo |
a=[20{r)]". (8)

When y—p,, then ¢(y, v)=wy5®(y—ro)+..,
where ¢ 15 the dimensionless frequency of vibrations
around the equilibrmium point x, (v ). For sutficiently
small valucs of ¥ this point is real, as well as all the
coefficients €'*° in (1). With v increasing the value
v=p, 18 achieved, when the collision of two classical
orbits occurs, corresponding to the stable {x,) and
unstable equilibrium points in the effective poten-
tial. The value », 1s determined by the {irst of egs.
(6) with x=x,, while x, 15 a root of the equation
f=xf —x*"=0. It can be shown that for y—»,

w=C(1—p/p )",

alp)~A{l—piv )", (9a)

where
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A=a (1+x1"/3f ") =5C3,
4y =2"""4% 314 5=0.19967 . (9b)

Note that asymptotics (8) follows from the disper-
sion rclation

E'[H:lJ‘{ﬂ, Ly

T j’k+3"
Q

A=1/n,

and from eq. (7) for the widths of highly excited
states with n>»> 1. To obtamn eq. (9a) conc should
consider the integral {7) for Q(#) in the case when
the turning points 1y, V- are nearby, and the function
@{ v, ) 1s considerably simplified. The details will be
published elsewhere.

For v > v,, the coefficients €%’ and parameter a(v)
become complex, Evidently, this solution has no di-
rect physical sense in classical mechanics, but pro-
ceeding te quantum mechanics it allows one to cal-
culate easily, within the 1/» expansion, not only the
position £_, but also the width [, of the quasista-
tionary state (see refs. [7-9]).

3. Some examples

{(a) We begin with the potential (4}, where
fixy=exp(=x)x*"1, 1=0 (10)

(A=1 corresponds to the Yukawa potential, A=2 to
the exponential potential ). The equations for x, and
e take ithe following form,

[x37'+ (2—D)xf]l exp{—x5) =1,

Xol(l—A+x,)
2—2+xy

[U2=ﬂ.—

hence

Xe=A+1[(1+42)121],

1 :
¥ [1+{L+40) ) xi exp(—x,) ,

A=ge[14+44— (1+42)'/2]34, (11)

Vv, =

(b} For the generalized funnel potential

V(r}:—%-l- S N

v N> (12)
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we get (g<()
IJ*='[N+1}{N+2}_{N+2}”N+” .
A=IX27(NE Y =g [M(N+2D P, (13)

where @, is the cocfficient in cq. (9b).

(c) Consider the Stark effect in a hydrogen atom
for the {n,, n,, m) state, where #,, n,, m arc the par-
abolic quantum numbers and r=n,+r,+ |m| + 1.
Using the results of refs. [9,18], we obtain for 3 1:

a=3F[—e W (F)] ¥/ J(F), (14a)

where ¢ is the first term in expansion (1), F=n"e,

J(F}:%J%(A’—B’u—kuz—u:”}‘”, {14b)

A'=m*F2—e )3 B'=48,F(el®) -2

and f,=8,{F) I1s the separation constant corre-
sponding to the parabolic coordinate y=r-—z.
Hence, 1n the region of weak ficlds

a=3F— % (2ny+m|+1)}F2In F

+O(F?) . {15)

The (0, 0, n—1) states correspond 10 circular clec-
tron orbits perpendicular to the direction of the elec-
tric field & In this casc the integral J(F&) can be ex-
pressed through elementary functions and

| z3 -
a=5(z+ 31— 27) —Anhz) . (16)

where
2= (1=30)72(1—1)~", t(1—13)4=F,
O<r<t, (17)

The collision of two classical solutions occurs at 7=14,
or F=F,=2¥%3-7=0.2081, where the parameter
of the asymptotics behaves similarly to eq. (9a):

Q(FY=Af ~S%(1 46712+ b, f+ ) (18)

A=273%37M2%5=-0.5722 and f=1-F/F,-0
(for details of the calculation see appendix).

(d) The formulae for the funncl potential {3) can
be obtained from the preceding ones when substi-
tuting g— — g,
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Fig. 2. |a{r)| versus #fe,. Curves (1)=(3) correspond 1o the
Stark effect, its spherical model and the funnel polenuial. Tn the
latter casc the values of |g| are multiplied by 10°,

p=1x,+x3.
z==[{1+3x3)/(1+x3)]">2. (19}

So, z> | and Arth z=Arthz~!'* ini, Therefore, the
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asymptotical parameter ¢ becomes complex, which
corresponds to oscillations of the coefficients €/*? with
k—cc. In particular, for g »oo we have: z— 3172,

a(oo)=1[3"2—In(2+3'2) +in] " (20)

and |ai(co}| =0.1578 {(compare with fig. 2}.

The parameters a4 for the Stark effect, the spherical
model (12) with N=1 and the funnel potential {3)
are shown in fig. 2 by curves (1)-(3), respectively.
Noie that a(v)-»o0, when v— p,. Thus, the coeffi-
cicnts €% (¢} grow sharply, and the 1/n expansion
itself 15 no longer applicable in this region. This was
observed already in the first allempts to sum series
(1) for v=», [7]. and the underlying reason be-
comes clear from fig. 2. However, for > p,, the pa-
rameter a(») decrcases with » increasing, and the
applicability of the | /n expansion is restored. In this
region the coefficients %) in eq. (1) are complex,
thus the first few terms of expansion (1) dectermine
the wadth of a quasistationary state with a reasona-
bly high accuracy.

Similar results were obtained also for the Yukawa
and Hulthen potentials, see fig. 3.

djam)
+ {5
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T 5
H-""‘-__kt ’:ll
3
2\:::“& 9
Tme—
{
0.9 10 'L 11 Ve

Fig. 3. The same as fig. 2 for the Yukawa potential {¥,=0.8400, curve (1)), the Hulthen potential ire=1.5234, curve (2)) and the
funncl potentials (12} with =1 and 2 {»,=0.3849, curve (3), and »,=0.4725, curve (4} ).
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4. 1/n expansion and the problem of two centres

The nonrelativistic problem of two Coulomb
centres,

Vi =— 2 -2 o p (IR,
4 2
p=(HyH)\ 2, (21)

15 encountered frequently in different branches of
physics, including the theory of molecules, p catal-
ysis, etc. In this case the coefficients €% depend on
the internuclear distance R, where the first term ¢
corresponds to the electron energy on the classical
orbat which 15 determined by the cguilibrium con-
dition of the forces acting on the electron in its rest
frame. Here we confine ourselves to the case
7Z=7Z>=1 {ithe molccular ion H7 ). For the states
with m=n—1, n +cc (or, equivalently, for n=1 and
D— oo, where ) 1s the space dimension) the equa-
tions can be wrilten 1n a parametric form,

eM=_2(1-1)3(1+71).

eI=2(1—1(2n, + Y[ 1+ (1+31)"7?]
—(2m+1}[1={1=37)""?]},

R=n—2R=1Y2(1=1)"2, (22)

where O<t<i, R<R,=3%?x2"2=1299 and
E=n""¢is the term energy, while r=cos’ar and & is
the angle at the Z vertex in a triangle (Z, Z, ). The
numerical analysis shows [10,19,20] that the €%
grow as factorials for A—oco, while the parameter
a=a(R), see eq. {(8), increases for B +R,. Here we
present a few analytical results.
If 0<R<R,, then

a(R)=—3(Arth (-0,
(=(1-30)"(1-1)7", (23)

and t=7(R) is determined as in the preceding equa-
tions. So the singularily of the Borel transform [20]
closest to the origin is at d,=1/2a < 0. The series (1)
is allernating in sign and can be summed with the
help of Padé approximants. In a recent paper [20]
the dependence of §, on R was cstablished numeri-
cally with a high accuracy. The valucs of the param-
eter &y, given in ref. [20], are in very good agree-
ment with the analytical formula (23).
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When R =R,, the three classical orbits (stable and
unstable) coincide, so the rearrangement of the | /»
expansion accurs at this point. If £ > R,,, we have

a(Ry=4{{{(1-{*) "' —Arh {]~! (24)
and

(=[(3t—1}/(31—1°}]'"2,
R=873*(1-0)-'(1+1)2%, l<r<«l.

In this case a=1/2d8;> 0, so the terms of the 1/# ex-
pansions are of the samge sign. The derivation of eqs.
(23}, (24) tollows the same lines as eq. (16), and
will be given in detail clsewhere. It is notable that the

singularity of ¢(R) differs from eq. (9a) and is no
longer symmetrical in this case:

a(R)=A4, |1-R/R,|~¥* R-R,, (25)
where A, =32 for R>R, and A_=—(3}""? for
R<R,.

5. Conclusion

Thus, large orders of the | /xn expansion increase
as factorials. This explains why in many gquantum-
mechanical problems ** it is necessary to calculate
~30-50 coefficients «*! and to use a summation
method 10 obtam the energy €, with the accuracy re-
quired for experiments. At present the summation of
divergent series occurring in quantum mechanics is
developed fairly well and., in principle, presents no
insuperable difficulties.
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Appendix

Calculating the integral in eq. (14b), we obtain

¥ For example, when calculating complex cnergies of quasista-
uonary states {#,, #,, m) for the Stark effect in hydrogen [8,9].
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a=cfp(z), (A.1)
~3
¢{3)=E+ 3(1_22} —Arth =z
=525 1+22224 324+ ), z-0, (A.2)

where ¢=1{ for the Stark c¢ffect in hydrogen, while the
dependence of z and encrgy €°? on the reduced elec-
iric ficld, F=v2=n", is determined parametrically,
eM=— (1437 (1 —17%) and eqs. (17). For the
spherical model (seeeq. (12) with N=1 and g<0)
we get: o=,

z=[(1=-30)/(1=0)]"2, eM=—(1+31)(1=1),
(I —12=F. (A.3)

Note that 1n both cases the root t=1(F) -0 for ¥-0
should be chosen, and 7= corresponds to the col-
lision of two classical solutions (stable and unstablc
¢quilitbrium points). It occurs at F=F_ where
F,=2'"%3-9=0.2081 for the Stark problem [8],
F,=2?%3"*=0.1481 in the case of its spherical
model. For F—F, we put 7=3(1—1) and obtain from
eq. {A.3) that

P+ 18=3 z=[3t/(1+i01V2, {A.4)
f=1=F/F, -0, while egs. {17) vield

i 2702

=321+ 101, (A.5)
from egs. (A.1)-{A.4) we obtain
z={3N'"[1-2x373f 124 0(NH] .

Hence, eq. (18) follows, where
A=5/8x3Y4=0.4749 ,

b= —=20/7x3*?=-0.5499 ,

b = —0.6699 (A.6)

{in the case of the spherical model). Analogous cal-
culations for the Stark effect give

A=5/23"x3/2=0.5722, b=-04770. (A.7)

These values are in agreement with the curves in fig,
2.
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The parameter @ of the asymptotics (8) in the weak
field region can be calculated, when substituting ex-
pansions of €'®) and J(F) for F-0 into eqs. {14).
In this way, for an arbitrary (n,, #,, #) slate 1 a
hydrogen atom, we obtain

a(FY=3F(1 —2pFIn F+kF+ ..}, (A.8)
where
k=%{3+ (3In2=-2)p

—s[{ptmyIn(p+tp)+ (p—p) Im(p—u)1},
p=02n+|m|+1)/n=1—(n,—ny)/n,
p=min.

In particular, p=1 and k=3.579 for the (0,0, n—1)
states with i 1, A=4.619 for the ground state, n=1.
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