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The asymptotic formn of higher orders of the 1/r expansion in quantum
mechanics is factorial. The Yukawa potential and the hydrogen atom n
electric and magnetic fields are discussed.

The 1/n expansion, a new method in quantum mechanics and field theory, has
already found numerous applications (see, for example, the review article by Chatter-
jeel]. In particular, it has been applied successfully to the hydrogen atom in strong
electric and magnetic fields*™ and to the problem of two Coulomb centers.®’ A topic
which has been taken up recently’® is the asymptotic form of higher orders of the 1/n
expansion. This topic is of theoretical interest and also important to calculations of
atomic states with spectroscopic accuracy. In this letter we report results on spheri-
cally symmetric potentials and on the problem of the hydrogen atom in parallel
electric and magnetic fields.

The energy eigenvalues (which are complex in the case of quasistationary states)
are given by power series in the “small parameter” 1/m:
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where n=n,+ 1+ 1 is the main quantum number {(n,=0,1,... is fixed; /- % ), and X is
the order of the 1/n expansion. In the cases of interest in this paper the asymptotic
form of the coefficients &'* is factorial:
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where a,f,... are constants which can be calculated. For example we have®’
’, { 1/2
a='=2% L, Ur)—> eV dn (3)

where U{r)=n?V(n*r) +1/27 is an effective potential which incorporates a centri-
fugal energy, and ¥{r) is the original potential which appears in the Schrodinger
equation. For bound states, the turning point r, goes off into the complex plane, and
the constants a and ¢, are generally complex. Consequently, the coefficients of the
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FIG. 1. The parameter of the asymptotic behavior, a, vs v=n"u (i is a screening parameter} for a Yukawa
potential.

i/n expansion oscillate at large values of k: €'*’ « &lcos(k8+ @), where S=arga. For
quasistationary states, ¢ and ¢, are real, with ¢ >0; in other words, series (1) 15 of
constant sign.

As an example we consider 2 Yukawa potential, which is frequently used in
atomic and nuclear physics: V(r)=—#"'exp{—pur), #i=m=1 {Fig. 1). The value
v=v,=0.7358 corresponds to the situation in which level n/(n=/{4+1% 1) goes off
into the continuum (v=n*y), and the value va =0.8400 corresponds to the collision of
two classical equilibrium points. The effective potential thereafter no longer has a
minimum at 0 <r< . In the interval 0 <v <wv_, which corresponds to the discrete
spectrum, the coefficients €'*’{v) oscillate at large values of k. With v=0.526 we have
§=/2, and the period of the oscillations in the sign of €'*’ is 4. For v, <v < v« the
parameter of the asymptotic behavior satisfies a{v) >0 and has a power-law singular-
ity as v— va:

a(v) =A{1 —v/v) > [1 4+ O0{(va—v) )], (4)

where 4=0.1116. An analytic continuation into the region v> v« leads to complex
values of a(v). This situation corresponds to the case in which the coefficients €'*?(v)
become complex, so that (by summing the first few terms of the 1/# expansion) one
can describe not only a shift but also the width of the level,*”

The problem of the hydrogen atom in external fields # and & is more compli-
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FI1G. 2. The same as in Fig. 1 for the
problem of the hydrogen atom in elec-
tric and magnetic fields (F=#"% the
curves are labeled by the values of 2).
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cated. We consider the case of uniform, parallel fields and states with magnetic quan-
tum number m=nr— 1, which corresponds to circular electron orbits. The 1/# expan-
sion 15 constructed around the classical orbit, whose radius, rq=ry(F, B), is found
from the equation

A 1
r(l—Fzr‘*}‘(l»ka Bzr‘)zx (5)

(i=m,=e=1, F=n"% and B=n"2" are “reduced” variables).

Let us briefly describe the calculation of the parameter of the asymptotic behav-
ior, @. Throngh a numerical integration we find the classical trajectory r(s), which
connects the point of the maximum, ro= ( py,2p), of the effective potential

1
~U(ry=r—1— [sz) —1 +Fz—§ szl
(taken with the opposite sign, in accordance with the description of the below-barrier
motion of a particle in the imaginary-time method’) with the turning point r,, which
lies on the constant-energy surface”’ U(r)=U(r,). The parameter a in (2) is then
calculated from (¢ is the imaginary time)

=5

a=(2ImS)~L, S§= J‘” pdr=J- r2dt. (6)
To 0
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N=2 behavigr, from (2'), for the potentials in
(7). The case ¥=1 corresponds to a funnel
potential.
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The results are shown in Fig. 2, which corresponds to fields F < Fx. Here F«( B)
is the classical jonization threshold,”* which is analogous toc v=v« in the case of the
Yukawa potential. The values of Fx are 0.2081, 0.2532, and 0.3449 for B values of 0,
(.5, and 1.0. As in the preceding case, o becomes infinite as F — F.

For the generalized funnel potential
Viry=—1/r4+g(r"/N}, N>0, {(7)

the spectrum is discrete, the point of a minimum, #,(g)}, exists for all 0 < g < w, and
there are no collisions of the classical solutions. Figure 3 shows |2| as a function of the
effective coupling constant A=n>"%g.

The asymptotic form of the higher orders of the 1/# expansion is thus factorial
(cf. “Dyson’s phenomencn™'® for ordinary perturbation theory). In many cases the

parameters of asymptotic expression (2) can be found analytically.
We are indebted to V. D. Mur for a useful discussion.

'’S. 1. Vavilov State Optics Institute, 199164, St. Petersburg, Russia.
*'A corresponding expression {although more complicated) can be derived for the preexponential factor ¢;.
The reduced energy €' corresponds to the minimum of the potential (r), so the two turning points

coincide: 73=7|. The classically allowed region contracts to a point, and r,<r<r, is the below-barrier
region.
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}This surface is the boundary of the classically allowed region, and the electron trajectory involved here is
analogous to a below-bacrier trajectory of the instanton type, which connecis points 7y and »; in (3).
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