Critical fields and above-barrier Stark resonances
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Exact values of the critical field % _ are calculated for a hydrogen atom,
including the case of the ground state. The widths T, of Stark resonances at
% — ¥ are also calculated. In the above-barrier region (% > &) the

widths T, (%) are essentially linear functions of the electric field strength.

1. Experiments on near- _threshold Stark states' * are at{racting interest to values
of the electric field & =& (s, ,n,,m} at urhu.,h an atomic level “touches™ the lop of a
potential barrier (following Shakeshaft er al.,t we will call these “critical fields™). The
value #_ separates two characteristic regions: a “weak-field” region, in which the
levels are below-barrier levels, with exponentially small widths (md in which a semi-
classical asymptotic hehavior prevails as % — 0; Ref. 5}, and a “strong-field” region
( % > ), in which the resonances are above-barner resonances, Both experimental
data md numerical calculations show that the transition from one region to the other
is exceedingly sharp. Consequently, the critical fielkds % ., which are strictly deter-
mined in the semiclassical case, n3 1, remain meaningful at small quantum numbers.

In the problem of the Stark effect in the hydrogen atom, varrables can be sepa-
rated in parabolic coordinates, and there is a barrier along the vanable 3= r—z. Since
the wave function y,(7) is defined on the semiaxis 0 <9 < e, the point 018 2
singular point. A Langer transformation®

p=expi{x), yi(n)=exp{x/2)g{x) (1)

maves this singularity off to — oo and allows one to correctly incorporate the boundary
condition y,(0) —0 in the semiclassical approach. The Schrodinger equation becomes

l d’ @ 0 1t 1, b )
dtﬁﬁ ¢=0, p'=-— g PPy e+ by, (2)

where y=n"m; 3, is a separation constant; €, ¥ , and gy are the “reduced” variables

T L T -?{ v 7 o 4_:;; _1’”'
e € —je" =2 E (&), ¢"=n'T,, F=1"%, p=—" {2a}

F—F —i"/2 is the encrgy of the resonance; and n. ny. and are parabolic quantien
numbers (we are using atomic units and the standard notation’ ).
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FIG ™. The critical fields F.{n,,m,,m) for
the hydrogen atom. Sodid curves: Caleulated
throngh the introduction of a Tanger corree-
tion. Dashed curves: Without this correc-
tien. Curves -4 refer to the lollowing serics
of states: (. 1,0.0Y, (0.0, — 1), (ny,n,,0},
amd {0 — 1.0), where ny=n.—={n 1)/2,
and 2 i the main guantum namber of the
level.

The condition that a level “touches™ the top of the barrier (ie., £,—U,) is
expressed by the equations

2 dpz |
Re plym)=Re o {ymy, =0 (3)

Using (2), we can put these equations in the form

¥

€ .
E'—!—EFy-{-,{.LEy_E‘Jf:ﬂ, V= BEYs [l—l—(l—;)“z | P (4)

where p=y,., =128 F/¢'", B;=Ref3; and €’ <0. The quantities €'and 5 depend on
the reduced electric ficld F and on the quantum numbers of the state. These quantities
are calculated by sumiming the divergent perturbation-theory series with the help of
the Pade—-Hermite approximant (1his method is described in Ref. 7). The calculations
were carried out up to 80th-order perturbation theory and achicved an accuracy

~10~% for € and $3,. The critical field F.(n, n,, m} was then determined from
Egs. (4).

Figure 1 shows results calculated for F for four series of (a#,,175,m) stades of the
hydrogen atom. The Langer correction turns out to be extremely important at small
values of n, particularly for the ground state. Tnt this case we have F =7 =0.2082,
while we would find F/—0.1587 withont this correction. The effect of the Langer
correction on the value of I, can be cstimated with the help of the parameter

§=8U/ Uyl gy ~Fi/n*{—€,)" (5)

We thus have § ~n~7 — 0. Exceptional cases are the states (#— 1, 0, 0), for which

3 Y .
we have —e, o 13 ~n"?3 5o the correction & falls off very slowly as # — 0.

As i increases, the values of /. approach the classical ionization threshold Fy,
which drpends on only the ratios v,— (#;41/2)}/n. Here are their numerical values:
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1G5, 2. The Stark widths T, (% = # .} versus # The scale along each axis is logarithmic. The guanlily
g (1) is plotted along the abscissa, O—The widths T, for the (D, - 1,0) states; +—Ffor the {0.0,n--1)
series i b Tor Oty 00 @ - for {n LD, The solid corve was plotted from Fq. (7) for the (07— 1.0)
series, while the dashed curve corresponds to the series of states (U0,n- 1), which correspond (in the limail
no— oz ) to ctreular electron orbats,

Fe=0.3834, 0.2081, 0.1674, and 0.1298, respectively, for the series of states (#—1, 0,

O, (L0, m—1), {(n--1}/2, (n—1}/2,0], and (0, n—1, 0), as n— . For Rydberg
{(n>1) resonances we find"’

] o
" T n(in n4- 1)

o b L (6)
where, for the (0, n—1, 0) series, for example, we have Fx=2'"(37) ",
e 2=2"2771=0.199, ¢;=1In 2/2=0.347 and /,=2.286. Equations (53} and (6) give
a qualitative explanation of the results of the numerical calculations shown in Fig. 1.

2. The positions and, especially, the widths T, of the Stark resonances at % — %4,

are of interest. Using the semiclassical quanttzation condition, and incorperating the
. .. 0
barrier transmission,™ we can show that we have

(% =%) )=y (nntk) "', > 1, AT

where ¥ and [, are constants which depend on the gquantum numbers. For the
(0, n—1, ) states, for example, we find r=2"3m) *In2-0.212 and /,=2.286.
Figure 2 shows that the asymptotic behavior in (7) agrees well with the resvits of
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FIG 3. The slope ¢ ol the redaced width of
the (ny,m,,0) levels in the above-barrier re-
gion. k=(ny m}/n, n— m. The plus sign
shonws the value of the coeflicient ¢ for cir-
cular orbits, 1.c., for (0,.0.n— 17 stntes.

0 | 25 0 »

numericalcalculations even at 7> 3. We sce that the Stark resonances at the time of the
touching have a small width, particufarly in the case of Rydberg {(#> 1) states.?’

In the general case in which the potential binding the particle has the behavior
V(#) «cr™® at short range, we find, in place of (7),

FAE =U,,) =const/n'? 1 7V -ONap g (g < 2. {7a)

3. Numerical calculations show™'® that the Stark widths in the abave-barrier region
are essentially linear [unctions of the electric field':

E”{F}E!?Ir“:t‘(F—F{]), F21,2F,. (8)

Using generalized quantization condittons for the above-barrier resonances (for
states of the hydrogen atom with m =0, 75 1, we can write these conditions in analytic
form™"), we have calculated the constapts ¢ and Fy in (8). The results of these
calculations (Fig. 3) show, in particular, that we have ¢ -+ 0 as x= {1, —n,)/#
~ 1, 1.e, for Rydberg states (n—1,0,0). The cxplanation for this result is that the
widths [, of the states are smaller by another order of »

In the limit of a very strong field, we find I', o« %} as & — on (Ref. 9). The
tincar dependence in (8} is thus an “intermediate asymptotic behavior.” This depen-
dence has recently been used to calculaie the electron energy spectrum in the process
of abave-barrier ionization.'?

We wish to thank V. P. Krainov for uscful discusstons. This work was supported
financially in part by the Russian Basic Research Foundation (Grant 93 02-14368).

"Here, as in (5), this asympiotic behavior ceases to hold for stale (n - 1,0,0),

'This situation corresponds (o the circumstance that (within the framework of a 1/7 expansion'™) the
reduced width € vanishes as long s the condition & < # holds, j.e.. up to the poinl at which the classical
salutions collide.

"A qualitative explanation of this fact is provided by the semiclassical 1/# expansion.”™ The use of that
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cxpansion makes 1t possitble 1o write €”as a function of & (in the limit # - & ) in a simple parametric form:
see Fgs. 13) 1n Refl 11
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