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Abstract - Analytic and numerical methods for determining the asymptotics of high-order termns of the Ll/n
expansion in quantum-mechanical problems are developed. It is shown that this asymptotics is always of the
factorial type. The dependence of parameters of the asymptotics on the form of the potential and on the coupling
constant is especially analyzed in the vicinity of the point of collision of classical solutions,

1. The 1/n expansion is 2 new and promising method
in quantum mechanics (see, for example, [1 - 3]). The
behavior of high-order terms of the 1/n expansion and
the convergence of corresponding series have been
recently studied using numerical [4, 5], as well as ana-
lytic [6, 7], methods. In this paper, we continue to study
these problems, paying special attention o short-range
potentials encountered in quantum mechanics and 1n
atomic and nuclear physics.

There are several versions of this method differing
in the choice of the expansion parameter (see i1, 2] for
details). We will consider below a version of the 1/n
expansion proposed in [8]. The peculiar feature of this

approach is that it is possible to apply it not only to the

levels of a discrete spectrum, but also to quasi-stationary
states (resonances). The corresponding examples can
be found in {8 - 10].

2. Let us briefly describe the main aspects of the
method for determining the asymptotics of high-order
terms of the 1/n expansion. The eigenvalues of energy,
which are complex in the case of quasi-stationary states
(E = E, — iT'{2), can be wntten in the form of power
series in the “small parameter” 1/n:
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} E(} E{}

e =2nE, =€ + R (1)
where n = n, +{ + 1 is the principal quantum number of
the level (n, =0, 1, ... is fixed, while the orbital momen-
rum | — <o), k is the order of the 1/n expansion, and
¢ . is the “reduced” energy. The coefficients £®, which
will be referred to as high-order terms of the 1/n expan-
sion, can be calculated using recurrence relations {4].
Afier the calculation, the question about how to sum
series (1) arises. Here, we need information on the asymp-
totic behavior of the coefficients e® for k ——» oe.

fn the cases under investigation, this asymptotics 15
of the factonal type:

k Cy | O
' =kla kﬂ(c,}+—+

k E"‘”.), k —— O, (2)
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where a, B, cp. etc. are the calculatable parameters.
The asymptotics of this type is well known for series of
ordinary perturbation theory (in powers of the coupling
constant g) in quantum mechanics and field theory,
where it is related to the instability of the vacuum state

under the sign reversal of 3.3) It will be shown later that,
in some cases, the asymptotics is more complicated, e.g.,

e® = k! {d'Fe, 11 +0(1/k)]

(3)
+2Re(@ Fc)+... },

where a, and ¢, are complex parameters depending on g.
The role of two terms in (3) may change as a result of a
change in g.

The two terms dominating in the asymptotic expan-
sion of £® can be determined from the behavior of the
signs of the coefficients of €®: if series (1) is a series of
terms with constant or alternating signs, the first term
of the “Dyson” type is dominant (in this case, the
parameter a > Q ora <0, respectively). If, however, the
signs of €® with large numbers & behave irregularly
(ie., oscillations of high-order terms are chserved in
the 1/n expansion), the second term in expression (3)
obviously plays an important role. This simple consid-
eration indicates that the parameters (a, g, p, B., etc.)
of the asymptotics can be determined if the coefficients
of the 1/n expansion are found numerically up to fairly
high orders I

Let us discuss several theoretical formulas. The
parameter & plays the main role (after k) in the asymp-

3 This is the so-called “Dyson " established for the first

time in quantum ¢ ics [11), and then, observed In many
lems of quantum mechanics {12 - 16] and field theory [17].

4% our calculations, the order k actually did not exceed 40 (the cal-
culations were made with a “quadruple accuracy”, i.e., 10 within
37 decimal places in the coefficients €*). An advancement to
higher orders is not fraught with difficulnes of principle pature;
however, we encounter iechnical problems associated with the
accumnulation of errors in the calculation of the coefficients e by
recurrence relations. We will consider further details of computa-
tional nature in Appendix 1.
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totic expansions (2) and (3). For potentals with a
spherical symmetry, it is defined by the formnla

Ta

a= (2I)", I, = Jq(r)dr,

where g = [2U(r) — ™12, U(r) is the effective potential
including the centrifugal energy, 1.e.,

4)

-1
U(r) = (2,.2] + lim #’V (n°7),

and V(r) is the initiai potential appearing in the Schri-
dinger equatinn.j) For example, for screened Coulomb
potentials

VD =—rAu), h=m=e=1, (5)

we have U(r) = (2r¥)~! — r-1Avr), where we introduced
the parameter v = n°j1, which is convenient for states
with n > 1 [here, f{x) is the screening function; see, for
example, formulas (8) and (12)]. As n — ==, a particle
1s localized in the neighborhood of the classical point of
equilibrinm x = x4(v) (here, x = #°Wr) in the effective
potential, which can be determined from the equation [8]

xf—xf' =v, (6)
and the 1/n expansion is constructed around the point x,.
The reduced energy €@ corresponds to the minimum of
the potential U(r), and hence, two turning points coin-
cide: ry = ry, i.e., the classically allowed region shrinks
to a point as n -—» oo, and the domain ry <7 < r; 15 the
subbarrier region in which ¢* > 0.
It can be proved [6] that, for states without radial
nodes (n, = 0), we have B = -3/2. The preexponential
factor ¢, can be calculated by the formula

=0

which can be derived in the same way as formula (4)
(see also [18, 19]). Here,

—1/2

a (r,—-ry)exp(e/,+1,), (7)

k (7a)

and ® = [U"(ro)]'7 is the frequency of classical oscilla-
tions about the point of equilibrium 7,.

Thus, the parameters appeanng in the asymptotics
of high-order terms of the 1/n expansion are defined
analytically. Let us consider some examples.

)See Fip, 3 in [6] for notation (in this figure, 1/2£©@ must be plot-
ted instead of £ on the ordinate axis). If there are several turning

points rm, we must choose the one for which the modules of the
corresponding integral is minimum.
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3. We will consider the results obtained for short-
range potentials, We begin with the Yukawa potential

Vir) = —%exp(-rfﬂ), (8)
which can be reduced to the form (5) by means of the
gaunge transformation r — ar in the Schrodinger
equation. For a = g, we obtain

fix)=e™* x=pur, p=(R), E = glé'“ , (8a)

where E, is the eigenvalue of energy for potential (5).
In this case, the value v_, = n’u_ = 0.73576... corre-
sponds [8] to the passage of the highly excited level
with n =/ + 1 2 1 to the continuous spectrum, whije
v, =0.83996... corresponds to merging of two points of
equilibrium (stable and unstable) in the effective poten-
tial LJ(r), after which the latter has no minimum for real
0 <r<ee,

As v — (), potential (8) is transformed to the Cou-
lomb potential, and a(v) = v/2inv — 0. Numerical
analysis shows that, for v <v,,, the coefficients £* oscil-
late for large values of &:

e® ~ Klla fcos(ko + ©y), ©=arga,. (9

For v = 0.5257, we have Rea_ = 0 and @ = 5t/2; there-
fore, the period of sign reversal for e® is equal to four
(sec Table 1).

For v, <v <v,_, the first term in expression (3) con-
tains a{v) > 0, and the senies becomes a series of con-
stant sign (for example, for v = 0.8, the coefficients
£® < 0 for k 2 4). For v — v_, the parameter of the
asymptotics has a power singularity:

a(V) = A(1 =v/v ) M1 + O((v, - V)], (10)
where A = 0.1116 (the exponent -5/4 does not depend
on the specific form of the potential [6]). Consequently,
the rate of growth of coefficients € increases sharply
as v approaches v,,. This is clearly demonstrated in Table 1.

An analytic continuation of (10) to the region v > v,
leads to complex values of a(v). This is in agreement
with the fact that the coefficients of the 1/n expansion
become complex-valued in this region [8]. This makes
it possible to describe (by simple summation of the few
first terms of the 1/n expansion) not only the shift, but
also the width of a quasi-stationary level [8 - 10].

The results of the numerical calculation of high-
order terms of the 1/n expansion are presented in Fig. 1,
which gives the values of b,, defined as

b, = In(|eRW)I/RY). (11)

If asymptotic expansion (3) 1s dominated by the first
term, the dependence of &, on k must approach a linear
function with increasing k. This is actually the case for
v >v,,. Inthe neighborhood of the point v_,, the change-
over of the regime takes place: for v < v, the second
term in expansion (3) becomes dominant; as a result, the
growth of |e®| becomes less regnlar, and the quantities b;
develop oscillations {see the curves for v=0.5 and 0.7).
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ON THE ASYMPTOTICS OF HIGH-ORDER TERMS

The same conclusion also follows from the calculation

gf the para;n;tcm a and a. (see Fig. 2, which shows that
¢ type of the singularity of (10) is completely con-

firmed).? PRy

. Another potential widely vsed in quantum mechan-

ics and the theory of the nucleus is the Hulthén poten-

tral V{r) = Vylexp{r/R) — 1}~ for which

JG)=x/(e*~ 1), u=(V,RHY, (12)
the equation for xy,(v) has the form
Xee*—1)2=v, (13)

and the values of the characteristic parameters are as
follows: v, = 1.2952, v, = 1.5234, and A = 0.1371.
The quantities a and a,, as functions of v, are presented
in Fig. 3.
4. We consider short-range potentials of a more gen-
eral form.
(a) Let the screening function in expression (5) be
given by
fx)y=x*"lexp(~x), A>0 (14)

(A = 1 corresponds to the Yukawa potential, A = 2 cor-
responds to the exponential potential, and the condition
A.> 0 rules out the “falling to the center” [20]). The point
of equilibrium is determined from the equation

A+ + (2 = Aotexp(=x) = v, (15)
which has two positive roots, We must choose the
smaller root x = x5(v) because @2 > 0 for it:

i

o = { ( _xﬂ(l—l-!-xﬂ))} ~v”lfnrv—--{]
2—-A+x,

(@ is the dimensionless frequency of oscillations about

the equlibrium point), Simple calculations yield
v, =2(e"A)P, e=2.71828..., (16)

A+l

Ve = oy [T+ (1+41) P15 exp(en,),  (17)

where x, = A + % [(1 + 44)'7% — 1] is the value of x,(v)
corresponding to the merging of the roots (ie., v=v,).
For the coefficient of the power singularity (10), we obtain

(18)

The dependences of v,,, v, and A on A are presented in
Figs. 4 and 5. In particular, we have
34
A=5"(5-1)" /96 = 0.111646...
for the Yukawa potential and
Ve =8e?=1.0827, v, =27¢3=1.3442,

A= 9—.56(1 FANP LA +an 2 o1y

and 4 = 0.1997 for the exponential potential.

*The methods of calculation of these parameters from the coeffi-
cients £) of the 1/n expansion are described in Appendix 1.
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Table 1. Coefficients of the 1/n expansion for the Yukawa po-

tential
£®
k
v =10.40 v =10,5257 v=0.8
0 ~3.449(-1) | —1.940(-1) | 4.280(~2)
] 3, 789(~-2) | -9.193(-2) | —-1.831(-1)
2 6.598(~3) 1.449(-2) 6.592(-2)
3 =5.205(~4) [ -1.381(-3) 1.478(-2)
4 —6.019(-5) | —4.868(—4) | —2.940(-2)
5 2.749(-5) 1.822(—4) | —4.879(—1)
6 2.930(-6) 1.253(—4) | —7.608
7 —4.267(—6) | -7.772(-5) | —1.387(2)
8 2.164(—8) | —-7.293(-5) | -2.902(3)
9 1.153(—6) 6.205(--5) | —6.869%(4)
10 —-2.300(-7) 1.320(-5) | —1.817(6)
11 —4.504(-7) | ~7.818(-5) | —5.325(7)
12 2.303(-7) | —1.118(-4) | -1.713(9)
13 2.246(-7) 1.423(-4) | —6.008(10)
14 =2.375(=T7) 2411(-4) | -2.282(12)
15 —1.218(-7) | -3.546{-4) { —9.335(13)
16 2.807(-7) | -6.987(~4) | ~4.093(15)
17 3.880(-8) 1.162(-3) | -1.915(17)
18 -3.823(-7) 2.620(-3) | ~9.526(18)
19 9.997(—8) | —4.850(-3) | -5.020(20)
20 3.870(=7) | —-1.235(=2) | —2.793(22)
21 - 2.517(-2) | —1.637(24)
22 - 7.161(=2) | —1.008(26)

Note: The order of a number is given in parentheses, e.g., —3.449(~1) =

—-0.3449,

{b) Let us consider another example:

In: this case, instead of (15), we obtain

[1 +ﬁxﬁ—x§ﬁ

(xn+x£+1)j{.ro) =V, O
1+x

Rx) = exp(—§'x8),

(19)

172

It foliows from these relations that
V., = 2exp(—p),

X%

12 M

2z
= [1+%

/B

B

+ = ¥
2

] . (20)

21)

(22)

and v, 1s determined in terms of x, according to the
first equation from (20). Accordingly, for the constant A

in expression {10), we obtain

A = gg[ B +d+ (B-2) (B +4) ]

314
(23)
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Fig. 1. The approach of the quantities b; to the asymptotic
values [see formula (11} in the case of the Yukawa poten-
tial; k is the order of the 1/n expansion. The values of v are
indicated on the curves,

15[
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0.65 D70 ¥=0.75 080 Ve0.85 0.9‘?

Fig. 2. The parameters ¢ and g, of the asymptotics for the
Yukawa potential (the values of la,.| are magnified by a fac-
tor of 20). The dashed curve corresponds o formula (10).
For v, <v <v_, the parameter a(v) > 0.

15

10

P
1.5V, 1.6 1.7

Fig. 3. The same as in Fig. 2 for the Hulthén potential.

The results of calculations are presented in Figs. 5 and 6
(the value B = 1 corresponds to the Yukawa potential
and B = 2 corresponds to the Gaussian screening).

(c) Power-type screening:

fxX=(1+x/*%, x>1 (24)

(x = 2 corresponds to the Tietz potential [21], which is
well known from atomic physics and which is a good
approximation of the Thomas—Fermi potential in neutra]
atoms, while K = e corresponds to the Yukawa potential:
the condition K > 1 is required in order for potential (5)
to decrease at infinity more rapidly than the centrifugal
potential). In this case, we have

o+ (1+K ) x] (1+x/%) """ = v, (25
v =2(1 — x)<-1, (26)
v, =2 (L4 (4% ) 0 @n

~1

o (1) - (40

The ratio p = (v, — v,)/v, as a function of 1/x is
depicted in Fig. 7 (in particular, v, = 1, v, = 1.0563, and
p = 0.0533 for the Tietz potential). The coefficient A in
expression (10) increases monctonically with K, vary-
ing fromA =0.05742 at x=2t0 A =0.11165at Kk = oo,

The obtained results indicate that the dependence of
the asymptotic parameter @ on v is qualitatively the
same for ali of the potentials considered above.

It should be noted that the interval v, < v <v_ 15

unfavorable for the 1/n expansion; for v > v, the bound
levels become quasi-stationary, while the classical point
of equilibrium x,(v) has not yet passed to the complex
plane, and hence, the coefficients in £® are still real-

valued. For this reason, simple summation of series (1)
does not allow us to determine, in this case, the level

width (see {8 - 10]).” It can be seen from Figs. 4, 6, and 7
that the values of v and v, are numencally close 1o cases

that are interesting from the physical point of view, and
hence, the 1/n expansior is inapplicable only in a com-
paratively narrow region v =~ v, (this conclusion was

drawn earlier [8] for the special case of the Ynkawa
potential), The width of this region can be estimated by
using the parameter p defined as

p=(Vy =V, )iv, (28)

(p = 0.1241 and 0.1498 for the Yukawa and Hulthén
potentials, respectively). It follows from the examples
considered above that p — 0 in the cases when the
potential V(r) o< 2 for r —+ () or for r — . For
example, p=c,A + O(?) for A — 0 in the case of
screening (14), while for the screening (24), we obtain

This drawback can be overcome by using more powerful methods
of summation of divergent series (e.g., with the help of the Padé-
Hermite approximants),

IV CTI  MyvC A" TV AR AT ™ RTITA T IT xF T oy *T. o oty A



ON THE ASYMPTOTICS OF HIGH-ORDER TERMS

p=ci(k—1)+...,x— 1, The coefficients’c, and ¢
are numericaily small, i.e.,

c;=Iln2-1/2=0.1931,
¢1=In(2/3)+ 1/2 = 0.0945.

(29)

This is in agreement with Figs. 4 and 7.

3. Let us consider an example of a potential for which
the dependence of the asymptotic parameter a on v has
a form that differs qualitatively from those in Figs. 2
and 3, We consider the (generaiized) funnel potential

Vir) = 7! +§rﬁ (Mg>0),

which can be written in the form (5) by setting
V= nzglf{HH}, ﬁx} =] —N-1xN+l

(N =1 corresponds to the funnel potential, which is
often used in QCD). The corresponding effective poten-
tial U(r) has a minimum for all 0 < £ < oo, The classical
point of equilibrium can be determined from the equa-
tion x¥*2 + x = v from which we obtain

(30)

-

v[l—v”“+0{vw+2)], v— (
x(v) = L AL (31)
yN+2 _ N+2 , V—» oo,
[I Ny Iv + ) o

-

The frequency of oscillations about the point x, does
not vanish:

[1+(N+2)x§”}
O =

172

N+1
1+x;"
r'1+-21-(J'f.f+1)'+,:*""""'+...,. Va0 (32)
B .23
(N+2) P —ev ¥4 24 v o

..

(¢, > 0), and hence, classical solutions do not merge in
this case. Accordingly, the parameter a(v) 1s complex-
valued and does not have singularities of the type (10)
(see Fig. 8). In light of the results obtained in Sections 3
and 4, this is not surprising because potential (30} has
only a discrete spectrum, and the energy levels do not
become quasi-stationary.

If v — 0, the potential in question approaches the
Coulomb potential, and we have [see (A.14)]

N+1

av)~v ¥ . (33)
(in the case of the Coulomb potential, the 1/n expan-
sion (1) is truncated because £® = 0 for k > I). In the
hmit v — oo, the parameter a{v) approaches a con-
stant value that is determined only by N (see Table 2).
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1.0
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Fig. 4. The quantities Vo and v, for potentials (14), The min-
imumvalucofvm.isauaimdfmﬁm‘h’ukampolmﬁal A=1).

A 2

0.4

0.3}

0.2

0.1

0 I 2 3 LB

Fig. 5. The coefficient A of the power singularity {10),
Gwe!(dependencennl)andcun:Z(dq:endﬂme on fB)
correspond to potentials (14) and (19), respectively,

1.0}

0
Fig. 6. The quantities v, and v, for potentials (19).

Using formula (4), we can determine a(Vv) in two limiting
cases:V — 0 and V — oo (sec Table 2 and Appendix 7).

6. Finally, let us consider the following question, It
is well known that the coefficients E; 1n the series

Eg) = Y Eg'
k

of ordinary perturbation theory in powers of the coupling
constant ¢ may increase as E, ~ (ko)! a* with an arbitrary

(34)
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0.12
0.10
0.08

0.06
0.04

0.02

i i L ]

0.6 0.8 1.0

0.4 1k

Fig. 7. Dependence of p = (v

- ¥ iV, on l/x

o > (). For example, in the case of an anharmonic oscil-
lator
(35)

H = %(PEHE) +gx", —ee<x<es,

the parameters of the asymptotics are known [12, 22]:

o) o

However, in all of the exampies considered earlier,
the divergence of the 1/N expansion is of a factorial
type: €8 ~ k! for k ~— oo (i.e., @ = 1). In order to find
the reason behind such a difference in the behavior of
higher orders of perturbation theory and the 1/a expan-
sion, we consider the potential

V() =-5"r8—gr, (37)

where 0 <« 8 < 2, v > 0, and g — +0, and which
involves attraction at small distances and has a barrier.
If g = 0, the energy levels condense to the continuum
boundary E = 0. In the semiclassical approximation,
we have

. N-2
= ==,

E,=—-An®C-% npl,
and the mean radius of the bound state 1s given by

(38)

2
I—E

—— D)

(ry~ (<E.) V8
(the constant A, > 0 am:l depends only on the ratio ¥n;
for example, A, = 1/2 at & = 1, i.e., for the Coulomb
potential).

It can easily be seen that the second term in equa-
tion (37), which perturbs the energy spectrum, becomes
cmrzp)arable: to the first term at characteristic distances
r~{ryif

" g~1. (39)
Therefore, it is f (and not g) that is the effective coupling

POPOV et al

0.3

0.2

0.1

),

Fig 8. Dependence of |a) on v =~ for potentials (30). The
exponents N are indicated on the curves. For N = 4, the val-
ues of |a(v)| are multuphed by 1/5.

constant for highly excited states. In view of this state-
ment, we can write the energy of the nith level in the form

25

E (g) = ~An 2~ Pg(p), (40)

where £(0) = 1. Calculating now the penetrability of the
barrier for small values of g, we find with exponential

accuracy that
1 v+ 2

Y_E_, ¥ } = exp{-n/a(f)}, (41)

Iy~expi{-c.g

where

¢, = 227 revhy/ (v+ )T ("'; 2 ) (42)
vV

v+ 7
af) = e ¥,

and C 1s a constant depending on v, 8, and !/n, and not
on the principal quantum number n. According to dis-
persion relations in 1/ (see [6]), the simple exponential
dependence of the width [, on n [for a fixed f, see rela-
tion (41)] corresponds to the formula £® ~ k! for the
coefficients of the 1/n expansion for k¥ — oo, It should
be emphasized that this conclusion does not depend on
the value of 6, i.e., on the form of the potential binding
a particle at small distances.

However, it follows from relation (41) for senies (34)
of perturbation theory that o = v. In this case, o = 1
only for v = 1, i.e., for the “Stark effect”,

(43}
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ON THE ASYMPTOTICS OF HIGH-ORDER TERMS

Table 2. Limiting values of the parameter (V) for funnel
potentals

N @p [at=o)|
1 1.5000 0.1578
2 (.6366 (.1592
3 0.5192 0.1914
4 0.4811 0.2571
5 0.4648 0.3356
6 0.4571 0.4235
B 0.4517 0.6228
10 0.4511 0.8489
15 0.4547 1.5125

Nﬂte:f Here, a; is the coefficient in expansion (A.14) for small val-
ues of V.

APPENDIX 1

We will briefly discuss here the methods of numer-
ical calculation of the parameters of asymptotic expan-
sions (2) and (3) and carry out their comparative analysis,

(1) In the region v > v, the coefficients of the 1/n
expansion attain the asymptotics rapidly, and the quan-
tities ,(B) depend linearly on & for & > 1:

() = In[e®/kUP| = kinag + Incy, + O(1/k) (A1)

(see Fig. 1 for B = 0). The parameters a and ¢, can be
calculated using one of the following methods.

(a) Method of linear approximation. Taking rela-
tion (A.1) into account, we can calculate g and ¢, by
means of the method of least squares (however, the value
of the exponent B must be specified in this case). The value
of P was varied between -2 and —1. The root-mean-square
deviation of the values of 5,(B) from the right-hand side
of (A.1) has the globai minimum for B =—1.50 + 0.01,
which is in agreement with the theoretical value [6]

=-3/2,
(b} Setting
'I.I':=E{ﬂfks{k-”r yi':kz(xk—lf-xt_ 1)1 (A*z)
we can easily see that extrapolation to the point 1= 0

gives x, —= g and y; — [} at a rate on the order of k!,
which allows us to calculate the parameters g and B
numerically. In view of the slow convergence of this
method, it is suitable for obtaining preliminary esti-
mates of a and B, whose values are then determined
more precisely by using method (a).

(2) v < v,,. The parameter a is complex-valued in
this case, and hence, we must use more powerful
numerical methods based on the search for complex
singularities of Borel's transformant:

EEm k
By(z) = —2Z.
P ~ P

It is well known that the radius of convergence of a
power series is determined by the distance to the near-
est singular point. According to relations (3) and (9),

(A.3)
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Table 3, Convergence of the values of 1/a,_for v <v_, (Yuka-
wa potential)

k v =0.40 v=0.5257
7 -3.6721+718.77 3.162+114.37
10 —1.945+{ 13.51 0.153+78.135
13 -2.138+i13.43 —0.127 £ i 7.996
16 -2.149+i13.72 —-3.0(-3)+i8.198
19 ~2.310+414.03 ~0.107 £ 8.303
22 =2310+713.99(*) | -3.0(-2)1i8.386
25 -2.419+i13.91 1(—=2) £ i 8.390(%)
28 -2.360 i 13.83(*) i(-3)+1:8.381

Note: The cases when the values presented in the table comespond
to the second (is closeness to zero) singularity of Borel's transfor-
mant are marked by asterisk.

z=1/a_ and z = 1/a} are the poles determining the
convergence of Borel's transformant. Generally speaking,
they must be the singularities closest to zero. However,
false poles, which may lie closer te zero than 1/a, in
some cases, also emerge because we are dealing with a
restricted set (with & < 40) of coefficients £® (corre-
sponding cases are marked in Table 3 by asterisks). It is
mmportant that, in varying the number of the coeffi-
cients €* introduced in calculations, we do not observe
a regular convergence of random poles, while a unique
sequence of poles that always displays convergence
exists. Further details of computational nature can be
found in [23).

The poles of Borel’s transformant can be found using
the Padé—Hermite approximant (PHA). For example, diag-
onal PHA are defined as follows (see, for example, [9]):

N - 2
P(z) + Qu(2)Bp(2) + Ry(2) [Bp(2)] = O™, (A.4)
4 —=- 0.

The coeflicients of the polynomials P;, Q;, and R,
{of degree L) are uniquely determined from the first
3L + 1 coefficients of function (A.3), which are assumed
to be known. Setting the right-hand side equal to zero,
we obtain

2 172
"QL + (Q.[. — 4PLRL)
2P, ‘

This expression has the following singularities: the
roots of the denominator (poles) and the radicand in the
numerator (branch points), among which we must
choose the one closest to the frame origin (the asymp-
totic parameter c, is determined as a residue at the pole
z = 1/a_). The disadvantage of this method lies in the
fact that the parameter B. must be preset. Numerical
analysis shows that the dependence on B, is rather
weak, and hence, we can set B =0 at the beginning of
calculations and then vary its value within 2 certain
interval. According to our estimates, . =—1.5 £ 0.5,

By(z) = (A.5)
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We wili illustrate the s of convergence for the
Yukawa potential. Because we analyze only diagonal

PHAs, the number of coefficients of the 1/n expansion
introduced in calculations 1s & = 3L + 1 [see Table 3,
which contains the values of 1/aq, calculated by equa-
tions (A.4) and (A.5)]. The relative error in the calcula-
tion of 1/a, amounts to 1 to 2%. This method was used
for calculating the curves in Figs. 2 and 3.

In the case of Huithén potential (12), the sitzation is
the same, and only the numerical values of the parame-
ters v, and v, are different.

APPENDIX 2
Calculation of a(v) for Funnel Potentials

it shouid be noted above all that the funnel potential
has only a discrete spectrum for 0 < g < ==. Therefore,
it 1s convenient to change the sign of the coupling con-
stant and to assume first that g < O (this trick was proposed
for the first time by Dyson [11]). Then, potential (30)
has a barmier whose penetrability determines the width of
quasi-stationary states and the asymptotic parameter a(V):
{0
-1 1 2 £
- [3-50-5
where the contour C embraces the turning points {(includ-
ing the point x;), and fx) is the screening function
from expression (5). In the case under investigation,
fix)=1+ N"'x¥*1 Here, the point of equilibrium x,(V)
can be determined from the equation x — x¥*2 =v and
is real-valued for v < v, where

12
] dx, (A.6)

N+2 1
v, = (N+1) (N+2) ¥, v = n'(-g)"" ' .(A7)

We will consider in detail two limiting cases v ——= 0
and v — oo,
(1) For v — 0, we have

x,=v+V 2o,

(A.8)
e =12 W
where
172
-3
v
(A.9)
I 112
1,2 N+l -2
xj{ - =¥} dr
1
Here, t = 1 and ¢, are tuming points,
N+l
t = x/xy, t,=(N/2)"v ¥,
0 =2N P (N+DNTF+1
PAI) (2 ) (A.10)
= (1—1)"g\3),

@i=2t+ 1, g,=0@+1%,

gy = %(13+2:2+3r+3/2],
4 = 5 1+ D (P+2),

gs = %(r+1)2(r‘+23+3]..”.
Because ¢, —+ oo for v — 0, we can wrile the integral
in {A.9) in the form
3
J=_[(1-:“)d:
. ' (A.11)
+fra e o =y w0,
4

where ¢ = 2N-'WN+1 { is the sewing point, 1 <€ 7 < 1,
and we disregard the terms vanishing for v = 0, Taking
into account the values of the integrals

1
172
C,,=J‘(1 -
0

N+2

IR 1
= N T‘(N)/(N+2)F(W .

1
Id;(l _f.,)uz = 2ari::t:.l.nh(l —z”)m

z N (A.12)
==Ilnz+ 2in2 +0(Z"), z —0,
N
we obtain
N N+1

J= (g) Cwv ¥ o+ %mv +0(1)  (A.13)

(the arbitrary sewing point ¢ does not appear in the final
result as expected). Finally, we obtain

a(v) = agv ¥ I:l —a;v ¥ Inv+0(v ¥ )], (A.14)
v-—*-ﬁ,
where
_ N+1 N+2 N+1
8y = —3 NHI"(W)XT(T), (A.15)
ZTnmNT

a; =2(N + )N 1a,. (A.16)

SNIf N is an integer, qy(?) is a polynomial of the Nth degree. It should
be noted that formulas (A.9) and (A.14) remain valid for an arbi-
trary N > Q.
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ON THE ASYMPTOTICS OF HIGH-ORDER TERMS

It should be noted that A = v+ 1 = —p2¥+2¢ jstan effece
tive coupling constant for highly excited states (for exam-
pie, for ¥ = 1, the constant A is similar to the “reduced”
electric field F = n'e in the Stark effect theory [9]).
Going over to the case g > (), we must make the substi-
tution A —= Aexp(—in). In this case, formula (A.14)
remains valid, but the parameter a(v) becomes com-
plex-valued.

(2) For v — oo, we have

1 1

xo(V) = (le_m) (N+1} (N+2) _yNE (A.17)
the second term becomes dominant in (A.9), and
1 12 dt

(A.18)

T!

s = =10

where 7 is the root of the polynomial py(7) that differs
from the value 7, = 1 for which the absoclute value of the
integral is minimum. The contour of integration cir-
cumvents the pole ¢ = § from above.

It should be noted that, for N= 1, 2, 4, and 6, the

integral (A.18) can be evaluated analytically, For N = 1,
we have T=-1/2, and

1
J, = § (2t + D (T - de—in

in (A.19)
=3 -2 +3"%) -in,
while for N =2, we have
1
tT=-1, J, = § (1 -rl)‘—?—in = —in. (A.20)
-1

The polynomial q,(#) has the roots £, = ¢, = —1 and

t, 4 = 1i2. Substituting these roots into (A.18), we
obtain the following possible values:

LI 23" -2 im,

a(e)
from which the second pair (1.e., T = ;) corresponds to
the maximum value of {a(=e)|.
Finally, we consider the case when N = 6:

1
Jo = 3“‘2_[(r3-4ﬁ+ 3) md{.

(A21)

(A.22)

The possible values of T are ¢, , = —1 [the double root

of the polynomial g(f)] and £; =—12 /2 . In the former

case, the integral in the sense of the principal value
in (A.18) vanishes, and J, =—in - 3712, For the remain-
ing roots, it 1s convenient to go over to the variable u =
, and the integral is reduced to the trivial integral

1
172
J';:Lj(u1+2u+3) (' = 1) du
2.3, (A.23)

=In(1+J2) ¥ in/4,
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satisfying the inequality at |J¢[ > | J¢|. Therefore,
1

ﬂ(m) = _

27

For any N, the integral in (A.18) can be evaluated numer-
icaily; the results of the calculations are presented in
Table 2. Note that, for N=1 and 2, we can obtain closed
analytic expressions for a(v) see formulas {B.8) and
(B.10) from [6]}. Expansion (A.14) and formulas (A.19)
and (A.20) are in agreement with these formulas in two
limiting cases.

The above formulas are valid for g < 0. The results
for funnel potential (30) can be obtained from these for-
mulas by analytic continuation in v. For v = o, the
quantities a(e=) and a*(=) make a contribution to the
asymptotics of the coefficients appearing in the 1/»
expansion, leading eventually to formula (3).

= 2InQ + )~ ins2] . (A24)
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