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Abstract

The exact values of critical electric fields &, for different states of 2 hydrogen atom, including its ground state, as well as the
widths I, of the Stark resonances a1 &= &, are calculated (at &= &.(»,, n., M) the potential barrier for an electron in the (x,,
Mg, m) state disappears). Using the modified quantization condition with barrier penetrability included, we explain 1he depen-

dence of I',, on the pnncipal guantum number #.

1. In connection with experimental investigations
of the near-threshold Stark resonances [ 1-4] the val-
ues of the electnc field £=£.(n,, n,, m), where the
(7, H2, 1) atomiic level contacts the summit of a po-
tential barrier, are of some interest {as in Refs, [5,6],
we shall call & a “entical” field). The field £= 4,
separates two different regions: the weak field region,
where atomic states are sub-barrier ones and their
widths are exponentially small {tending to the quas-
iclassical asymptotics [7,8] at £—0) and the strong
field region, &> &, with the above-barrier reso-
nances. Both experimental data and numerical cal-
culations [9,10] show that the transition from one
region to the other is rather sharp. So the critical fieids
€., strictly defined in the gquasiciassical limit #:3 1,
are meaninghu! for small guantum numbers as well.

The calculation of the critical fields & for a hydro-
gen atom 1s discussed briefly in Ref. [11]. Some new
data are given in Section i, in particular, for the (m,
m, m) states with m=t(n—1)=0, 1, 2, .. where
m(n) is the magnetic (principal } quantum number,
Sections 2 and 3 contain entirely new results; The
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asvmptotics of the Stark widths a1 §= &., when the
atomic level contacts the barrier summit, see Eqs.
(143-(16) below, obtained with the help of the
modified quantization condition with the barrier
penetrability included [12-14], Some properties of
the above-barrier resonances are discussed in Section
3, where it 1s shown that these resonances are rather
1solated in the energy region close to the barrier
summit.

For the Stark problem in a hvdrogen atom the van-
ables are separated 1n parabelic coordinates [7], & »,
and ¢ (O<e<2xn), while a barrier exists for in the
variabie n=r— z. Since the wave function ¥;{#) is de-
termined at the semi-axis 0 <n< oo, 7=_ is a singular
point. The Langer transformation [15,16]

n=exp{x), x(n)=exp(ix)w{x) (1)

maoves this singularity to —oo and allows one to deal
correctly with the boundary condition y,(0)=01n the
quasiclassical approach. The Schrddinger equation is
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1 42 w
R +piy=0,
pr=—Lutt foytiey +iFy, (2)

where —co< x<oo, y=n"" nand B, is the separation
constant. Here we use atomic units, i=e=m,.=1, and
“reduced” variables,

e=¢ —1e’=2n2E (&),

H= %a I"':=(”'f+%));”1 {3}

e"=pnl, F=n'f,

E=F —1iI" is the complex resonance energy, n,, o,
m are parabolic gquantum numbers and
n=n+n.+ |m|+1,

The condition that the atomic level contacts the
harrier summit (Le., E,=U,,) 1s expressed by the
equations,

=0, (4)

which, with Egs. {2) taken into account, have the
form

¢ +2Fy+ u*y=—:=0,
€ -
y=— g [1+{1-0M, (5}

where y=y,, 15 the point of maximum of the effective
potential in Eq. (2), {=128% F/e?, f5=Re §; and
e =Ree<(, The quantities € and 5, depend on the
reduced electric field Fand the quantum numbers n,,
n., M of the state. They were calculated by summa-
tion of divergent perturbation theory senes (PT) us-
ing Hermite—Padé approximants {a brief description
of the method is given in Refs. [9,10]). In these cal-
culations 60-80 PT orders were included ', which
provided for an accuracy ~ 10~ %*in € and #,, then the
critical field F.{(n,, 1;, m) is calculated from Eq. {3).

The results of the calculations of F, are given in
Fig. 1. Curves 1-3 in this figure belong to the follow-
ing states: {0, n—1,0), {(n, n,,0), (m, v, m), (0,0

! We have compared the values of £, and I, obtained by the above
computational method, with the results of Refs. [6.17], in which
the low-frequency (@« 1) theory of multiphaton tonization was
developed. The results of the two approaches are in complete
agreement al a;=0. In particular, we reproduced the curve for the
dc Suvark shift in Fig. 3 of Ref. [16].
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Fig. §. The crnitical Relds F(n,, #., m) for a hydrogen atom,
Curves 1-3 correspond to different (#,, 42, ™) states as ex-
plained in the text.

n—1} and (n—1L, 0, 0), with 7, =3(n—1) and
m=3i(n—1), With the increase in the principal
guantum number A, the £, values approach the clas-
sical ionization threshold F, [9], which depends only
on the ratios ». Here are some numerncal values:
F,=0.1298, 0.1674, 0.1693, 0.2081 and 0.3834 for
curves 1-5 1n Fig. 1, respectively. For the Rydberg
states *, #3 1, we have

€3

FefFy=1+ “+ nilnn+ly) T (6)

the parameters F,, ¢; and ¢; depending on v, v, and
@lu+v,+v,=1), For example, F*_”'“{SH}_‘*
0.1298, ¢;=2-2>"x""'=0.199, ¢=1In2=0.347
and f,=2.286 for the (0, n—1, 0) states (¥ =pu="10,
¥,=1at n—co). The asymptotics {(6) with the above
parameters is in good agreement with the results of
numerical calculations at x = 5.

Let us cormpare the obtained values of F, with other
values available in literature. Consider the tunneling
of an electron along the direction of the electric field.
& (one-dimensional model). The potential
V(z)=—z"'—=&zhasamaximum at z,,= &~ /% with

Z Note that this asympiotics, as well as Eq. {14}, is not valid for
the (0,0, n—1)and (n—1,0, 0} states with n, =0.
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y,=—26"% Negleciing the Stark shift of the level,
ihe disappearance of the barrier in V{z) is deter-
mined by the condition Fpo=—1/2r% It gives
F_=1g, which 1s considerably less than the correct
values of F.. A similar approximation (Le., €=—1
and & =1 in Eqs. (5)) gives {=3, F.=0.125 for the
ground state, #=1. In Ref. [3] the value
& (n=1)=0.13, obtained with enly two PT orders,
is quoted. Comparison with Fig. 1 and with the exact
pumerical value £{(n=1)=0.2082 shows that all
these approximations are insufficient.

2. To obtain the Stark resonances at £=&., we use
the modified Bohr-Sommerfeld quantization condi-
tion with the barrier penetrability included [12-14],

X1

I oo
J= 2 | pdx=n+i- 5 p(a). (7)
1)

where J 1s the quantization integral, pi{x,
EY=12[E-U(x}]}"? the quasiclassical momentum,

lxl L g ,
ﬂ:;j[—p"{lE}] ld«'f {?}

o{a) = ,}iiln[}*(%+ia)ff(§—ia)(l Fe-2my]

+a(l—Ina), (7)

x; are the turning points and x, < X < X, 15 the sub-bar-
rier region, If the energy 1s close 1o the barrier sum-
mit, E= L7 = Ulx,). the potential U'(x} can be ap-
proximated by the “upturned oscillator”,

Ulx) = Uy —fot{x~xn)%
a={U,-E)/w, (8)

la| <« |. Expanding all the guantities in Eq. {7) at
a—Q and taking inio account that g=1I'/2w at
E = U, one can solve the resultant equations in the
loparithmic approximation, In(#+3 ) = 1,

= orIn 2

I =

T n(n+ i)+ ()
where

1T_

Jo= — d.l'i.'

?:’I P .
0

= 32
I :ln(gm(xm ~%o) )+C
Jo

+2HE_— l )dx, (9)
JNF XX

Ko, Xm and p=p(x, Uy) are the turning points and
the momentum at F=07,, C=0.5772 is the Euler
constant and we denote I, =T (E.= U, ).

It should be noted that the oscillator frequency
depends on #, which can be easily seen from the fol-
lowing example {({=0},

V(r)=— = — 6,

= Do, (1C)
Iols

If £—0, the energy levels with E~ U, pet into the re-
gion of highly excited states, where

|E,.,E ﬁ_'”—-zﬂ_-'f{:—ﬂ'}} <f’n>“*”2”2"ﬂ},

mn""|EH|”1fr<rn>~”_(2+ﬂ”[2_a}: (11]

whence the estimation follows,

Iy=eonstX (rEHeVE-alae ny-l, 1. (12)

For the Stark problem in hydrogen with two degrees
of freedom (& and » vanables), the calculations be-
come more complicated. From Egs. (2), {5} it {ol-
lows that

ex(1= )
1+ (1-0) 7]

W {E= 6 )= (—e)"V2F, (13)
where ¢;=3 and { isdefined in Eq. (5). So, w,xcn =3,
which is related te the impact frequency of an elec-
tron with the wall of the potential barrier in the
Coulomb field and corresponds to the Gamow for-
mula (seealsoEg. (i1)ata=1).

The final expression for the widths [, can be writ-
ten as

o=~ 3lnn+i)" !, &=4£, n»1, (14)

where 7 and /, are constants, depending on #,;, #; and
m. For instance,

p=28(37)"*In2=0.212,
lo=C—~4+In967=2.286, (14°)

in the case of the (0, n—1, 0) states. The values of
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Fig 2. The dependence of n® 7( 7, n,m) =12, on the principal guantum number n. The values of In » are plotted at the abscissa. The solid
curve 15 calculated by Eq. (14) with the values of the parameters y and J, given 1 {(147), the dotied anes correspond 1o Eqgs. {153 and

(168},

and /; for an arbitrary state can be calculated numer-
ically, see Appendix.

It should be noted that the asymptotics {14) may
be modified, »n,=0. For example, we obtained for the
circular states (0,0, #—1) that ?

Fpo=yyn=100 (13)

and for the (n—1, 0, 0) states *

Fo=y,n7 %3, neoo . (16}

The widths I, for different states of a hydrogen atom,
calculated by summation of PT series, are shown in
Fig. 2. As can be seen from Fig, 2, the asymptotics
{14) is in good agreement with numerical caleula-
tions already at a1 3.

3. A resonance can be abserved without ambiguity,
if "« AE, where AE is the spacing between the adja-
cent resonances. in the one-dimensional case from the
modified quantization condition (7) 1t follows that
(n=>1)

I in 2
qﬂ_ﬁEn_ 5 =0.110, (17)
Lo /C =1+ 4 + (18)

In{n+iy+es 77

withc,=2r%/In2~28.5and cs=C+In 167 =4.50 (in
the parabolic approximation ). These asymptotics are
valid. within the frame nf the narahnlic annravima.
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tization integrals J, near the top of the barrier, F— F,.
It is easy te obtain that

Im B = — §s€”, "=i"g%(1+3fl’m}f"= (A.4)

wherg "= —Im €—=10,

Xl X1

dx dx
S=Jnk|[x}/ka1(x) (A3

=0

and the reduced variables (3) are used. The expan-
sion of J; 1s analogous, but much more complicated,
since the derivaties d.J5/0¢ and 4J./88. are loga-
rithmicaily divergent, as F— F ..

Finally, we obtain Egs. (6) and {9}, where

deiln 2
- , A6
’ (14+5/y.) (4.6)
21+
o= CHIN[80(Vm — Fo )] + ﬁﬂf”, (A7)
M 1
1)
= Ay ——— - — ,
- I "“ ()*“"f‘iz{}f‘] Jﬂn(,vm*y))
0
j=1,2, (A.8)

and the frequency w of the “upturned oscillator™ is
given by Eq. (13). Here we dencte by overbars (e.p..
Yo, ¥1 = Ve E; {y), etc.) the values of the correspond-
mg variables at E.=0L,. or &=£. Since
JEE (V)=w(yn—y}+..at y—yn,, the integrals 1; are
convergent and can be calculated numencally, For
m=0 states it 15 possible to obtain 7, 7, 1n analytic
form. In particular, in the case of the {0, n—1, 0)
states with n>> 1 we have u= £, =0, =1, then

2” 2 x4

- =L, _— T = —1. 4
FooFy= 5 <0130, 6= 5 1,
V=== (3n/4)?5.552, (A.9)
=0, to=—2(1—in2), r.:zinz, (A.10)

and Eqgs. (14), {14") immediately follow,
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