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The method of calculating higher orders of perturbation theory based on perturbation of the Fock
operaior with a purely discrete spectrum is generalized to the case of the Dirac equation with a
potential of the Yukawa type. Corrections to any order of perturbation theory in the energy of an
arbitrary bound state are given as finite polynomials which are determined through recurrence
relations derived from the dynamical symmetry of the unperturbed problem. We propose a modi-
fied Padé approximant methed which can be used to transform a divergent perturbation series
into a rapidly convergent sequence for all bound and quasistationary states of the system.

1. INTRODUCTION

The quantum-mechanical problem of the motion of a
particle in a central field of the form

Uiry=—Zr'V(ar), V(0)=1, {1)

where Fix} ts an entire analytic function of the variable
x = Ar, 15 often encountered in nuclear theory and in plasma
physics. For example, the Yukawa potentia!l is of the form (1)
with Fix} = expl — x). Another well known case ts the form
Vix) =1 — x*.

Recent developments'™ in higher-order perturbation
theory permit an analytic solution to the problem and the
functional properties of the solution can be studied over wide
ranges of the quantum numbers and parameters of the prob-
lem. In the nonrelativistic limit, the solution for a potential
of type (1) has been obtained to high orders in perturbation
theory>’ with respect to the parameter 4. With the help of
generalized summation methods for formally divergent se-
ries,*™'? the region of applicability of perturbation theory
can be significantly widened and the energy levels can be
obtained up to the ionization threshold®>”!! and also the
quasistationary states can be calculated.”'?

For large values of Z, relativistic effects must be taken
into account. Earlier,'® with the help of the method of Sturm
¢xpansions, closed-form expressions for the perturbation
corrections to the bound states of the Dirac equation were
obtained for a wide class of perturbing potentials. In the case
of the potential (1), the first three orders of perturbation the-
ory have been computed analytically' for arbitrary values
of the quantum numbers.

However the difficulty in calculating the perturbation
terms grows rapidly with order, and a rather large number of
terms in the perturbation series is necessary to get a solution
800d over wide ranges of the parameter 4
~ In the present paper the higher orders of perturbation
theory are calculated by a method based on the dynamical
Symmetry of the unperturbed Fock operator with a purely

discrete spectrum. The method is equally suitable for the
Bround state and for arbitrary excited states of the Dirac
‘Cquation. A general analytical expression is obtained for the

‘CXpansion coefficients in the perturbation series in A. With
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the help of generalized summation methods, the energies of
the bound and quasistationary states can be calculated ac-
curately for all values of the quantum numbers #, /, and ;.

2. PERTURBATION THEORY FOR THE DIRAC OPERATOR

We lcok for the stationary-state wave function of the
Dirac equation in the form'®

fl [f‘) Q'ﬂm )
fz (r) Q‘fjr’m ’

where / and are the orbital and total angular momenta of the
system, f2 ,, arethespherical spinors, and /' = 2j — /. After
separating out the angular variables and applying the scale
transformation r — Zr, the Dirac equation with potential {1)
reduces to a set of two equations for the radial functions f|
and f:'a:

1
W (r)=— ( JFLH

r

fffi ‘f*.k fi=p[—pt—E—1r'V{er) Jfu
ror (2)
dfq

e L E TV (@) I,

We use a system of untis such that i=e¢ =m = 1. Here

k=I1l+10—=jlj+ 1) — L/48 = aZ, and a is the fine struc-

ture constant. E is the energy divided by Z2and ¢ = 4 /Z.
From the assumption that ¥ (x} is analytic, we can use

the expansion

r~V{er) =r“+2 Ve'rt=r+5V,(r), (3)

fon

where the V; are constant coefficients.
The eigenfunctions and the eigenvalues £ are also ex-
panded as power series in &:

E=FE,+8E, §F E Eys™, (4)

N -]

where £ 1s the unperturbed eigenvalue of system (2) with the
potential Vy(r} = r ' and §E is the correction due to the per-
turbation 6¥_.

Following the approach taken in Ref. 13, we transform
to a set of equations for functions F(x) and G {x), reiated to f,
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and f, by
F(z)=(2--2E.)"f (vzf2} + (2+2E.) *f, (vz/2),
G(z) =—{(2—2E) ", (vz{2}+ (2+2E.) *f2(vz/2),
where E. =82E, v=F8 (1 — E.Y "%, x =2v"'r. Elimi-
nating one of the functions, say G {x), from the above pair of
equations, we find a single second-order equatton for the
function F [x). The substitution

— F(z)»yx)=[v—ktw(z)] "F(z), (5]
where
wiz)=(z/2) [8E+6V,{(vz/2)], (6)
converts this to the self-adjoint form
(L—N)Y (2) =W (z) Y (), (7)
where N = E,v + 1/2 and L is a self-adjoint operator given
by
[ d d + s5° + x 8
T dr dz 4z 4 }
with s = 2{k 2 — £ %)'/%. The unperturbed equation
(LN} y" (z)=0 {9)

corresponds to a Coulomb field and has a purely discrete
spectrum of eigenvalues given by (see Ref. 16)
N, =p+{s+1)/2, where p=10,12,...1s the radial quan-
tum number. Setting ¥ = &, we obtain

v={ [+ (=) )+

and the Sommerfeld formula for the unpertfurbed energies
E,=pF "1 =B/

The operator Won the right-hand side of {7) isdue to the
perturbation. We have

Wiz}=EJwiz)—w (z} 1+ 1-EHz'wiz} [ 2vTw(z) ]
+AV2E, (viw(z)) —z+1)—zd (z)+xd (z), ({10]

where w(x) is given by (6},
Alz)=w'(z}/2[v—k+w{z}],
Al (x)=dAldzx.

w' {z) =dw/dz,

Using (10}, we expand ¥ 1n a power series in £:

W(I)=ZW,..(I) e, (11)

mee]

The functions W, [x) are independent of £, and according to
(3}, {4}, and (6], are polynomials of degree m in x with coefii-
cients dependenton E,, E,, ..., E

We seek a solution of {7) in the form

Y(g)y= Yo" Y 01" ysla), G5 =bpm (12)

N Pl

where the C'¥! are the expansion coefficients of the N'th or-
der corrected function with respect to the complete set of
eigenfunctions {y, }, and p, is the radial quantum number of
the unperturbed function y,,(x),

Y

st 1" (@),

yplz)= [ I (p +3+1)
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where L & are the Laguerre polynomials.
Substituting (11) and {12} into equation {7}, multiplying
by y,(x) from the left, and integrating with respect 10 x, we

obtain
N  g4m

(@-p)C7=) Y Walan "™, (13)

Tomm ] i =1
(p=ad)

where
Walg, ) =<ye|Wnlys>.

Because of the dynamical symmetry of the unperturbed
problem,"’ for any integer p.g,m, we have W _{p, q)=0 if
lg — p| > m, and hence the sums over m and p on the right-
hand side of {13) are finite, so that in each order C* = ( for
LD — Po| > Ny

The coefficients C'"' can be calculated from (13) if the
coefficients C(N,<N) and matrix elements W, (g, p)
(m <N )are known. To obtain the N th-order correction to the
energy, we use the relation

N=—L1 Petm

- Z‘ 2 Walpa PYCs (14)

Mam ] Pk Iy T

{paa0}

Wy (Fur Pn)

which follows from {13) with ¢ = p,. Since Wy(po, po) de-
pends linearly on E,, relation (14) leads directly to an
expression for £, in terms of E; and the coefficients CY' for
i, j«N — 1 through a simple recurrence procedure, As a re-
sult, £, can be written as a polynomial involving v7, k, and

E..
N—1 2[N=i=1} 2{i— M)+4

EN=2—“FZ 2 f_‘_ B\ v EE b, (15)

ij—H 1‘1=lu ]-ll-u

where the ¢, arcintegers, M is the integral part of (¥ -- 1)/2,
and the index /. takes values such that the sum i, + i; + ¥ is
odd,

(N} {7
B 0= Y tutsta (Hn Hoay -

LITL S )

. 1 HNJ FiﬂlVEHl. - VN“J!" {16]

N

(315 Y3y, % ) I8 an integer, and > = V.
F=1

Whenp = 0, = & 2and E); are polynomials involving only

two variables £, and k. Explicit analytical expressions for
the first several orders of perturbation-theory corrections (0
the energy of an arbitrary state are presented in the Appen-
dix.

where x ; >0, ¥}

1284

3. SUMMATION OF THE PERTURBATION SERIES FOR
BOUND AND QUASISTATIONARY STATES

Tn most cases the perturbation series will have bounded
radii of convergence or actually by asymptotic series. There-
fore when the expansion parameter is sufficiently large, it 1S
necessary to employ generalized summation methods to the
series.

In the case of the Dirac equation with a Yukawa poten-
tial

O(ry=—2Zr e (V,=(—1}/il)
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with use 0f[13] and (14) we calculated 26 of the expansion
Cﬂafﬁclents {4) for all states with quantum numbers
n=1,2,3 for B =0 (the nonrelativistic limit), 10a, 20q,
40c, 80a, 110a, and the limiting value 8= 137]k|
aj@” ' = 137.036). In all cases the signs of E, were alternat-
ing and £ /| rapidly increased with increasing N. The de-
pendence of |[Eyl on B turned out to be a monotonic de-
crease. For example, in the ts, , state for Z = 8 /a == 0, 40,
g0, 110, 137, the quantity E,. was respectively equal to
1021 10", 6.911-10", 1.779- 10", 1.921.10' and
§.423 . 10°

The perturbation series were summed using the method
of Padé approximants.® The usual Padé approximants [M /
L] to the function f{g) satisfy a linear equation

O (&) f 5 {e) —Pr (£) =0, Op(0)=1,

where P, {£) and @, (€] are polynomiais of degree M and L
whose coefficients are determined from the condition

. (e)fle) —Pu(e)=g(e™*").

(17)

The method gives good results in the nonrelativistic case
{8 = 0).™" This method was used on the Dirac equation to
calculate the energies of the bound states for all values of £ up
to threshold.

In discussing the dependence of £ on £ it is mnvcnient
tousethescaletransformationE — E' = n2E"’ &€ —+E=nlg,
where £'= £ — B°. For fixed ! and j and different », the
functions £ '(¢) are very close to one another. The depen-
dence of £’ on £ is shown in Fig. 1 for the states s, ,,, 25,5,
38, with 8/a =0, 80, 110. In the nonrelativistic case
(8 = 0] all three curves are identical to within the accuracy of
the figure.

The critical values £ = ¢, corresponding to a contin-
ugus energy spectrum are shown in Table I. The nonrelati-
vistic values £7 are given in the second column. Relativistic
values g, are given in columns 3, 4, and 5 for 8 /a = 40, 80,
10, respectively. The corresponding values of 4, are £.Z.
Forsmall Z the vaIu&s £. can be approximated closely by the

formula
£.ve %8, (18)

The coefficients ¢, are gtven in the last column of Table 1.
With the help of (18), £, can be determined to an accuracy of

'E’hBLE 1. Relativistic values of the critical screening parameter £_(Z ) =

r:_n-jrl'lt

-3rr
- g 21

—f.f

— ¥

FIG. 1. Dependence of the energy of the s-levels on the screening param-
cter for different values of 8. £, is given by thesolid curves, E | . by the
dotted curves, and E i h}r the dash-dot curves. Here E = {n/
ZV(E — d ~?* atomic units.

within 29 or less for Z values in the interval 0 < Z < 80 for
all states shown in Table I.

Whene > £, and ! #£0, because of the centrifugal barrier
quasistationary states arise’ causing poles in the Padé ap-
proximants i1n the interval £, «c and the sequence of the Padé
approximants in the interval {e_, a} and the sequence of the
Padé approximants diverges. In order to find the energies in
this region it is necessary to construct a multivalued analytic
function which would give the real and imaginary parts of
the energy for £ > €. This can be done using the usual “*lin-
ear” Padé approximants satisfying {17) by transforming the
independent variable.” If such a transformation is carried
out with the help of 2 multivalued analytic function contain-
ing the parameter £, explicitly, then the energy and width of
the Breit-Wigner resonance can be actually determined.'?

In general, when there are both bound and quasistation-
ary states, a sufficiently general summation method is re-
quired which does not assume g priori information on the
threshold value of £. The multi-valued function can be ap-
proximated by a single analytical expression using an ap-
proach which is in a certain sense a generalization of the
Padé approximant method. In contrast to the usual Padé
approximants, which satisfy the linear relation {17), we shali
consider modified approximants which are solutions of non-
linear equations with polynomial coefficients determined
from the expansion of the function to be approximated in a
Taylor series.

A ,.(2)/z, atomic units.

n; eNZ =0 e o (40) £, (80) €, (110) be,
.-_'_'—-__
;:,. 11908 1,2050 1.2557 1.342 0.462 —
» ‘s 0.31021 0.31676 0.3408 0.3848 0.0738
EP’f- 0,220 0.224 0,223 0.225 0.008
HP s 0,220 0.224 0.239 0.265 0.05
:a-'ﬂ*: 0.13945 0,1421 0.1516 0.1686 0,0298
ﬁi’*ﬁ 0,143 0.114 0,115 0.147 0.0061
35"’ 0113 0.115 0,124 0.133 0.021
a::' 0.0913 0.0914 0.0919 0.0924 0.014
S 0.0913 0.0918 0,0930 0.0946 0.005
733
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TABLE II. Convergence of the “quadratic” approximants 1o the energy of the 2p state.

EF[N,N, N]‘:";u E![N, N, N].j_[]l
N N
£=0,23 0,26 p=0,23 0,28
g 1.033 Eﬂ,ﬂiﬂ'ﬂ'} 3.888 (3.40) 15 1,152 (0.407) 3.817(3.37)
i1 1.177 (0,382) 3.802 (3.38) 16 1.152 (0,407} 3.817(3.37)
13 1,151(0,411) 3.816(3.36)
For example, we consider the “quadratic” diagonal ap-  APPENDIX

proximants [V, N,/ ] satisfying the equation
Py(e)[EY ¥ "1 {e)} 2+ Qx (e} EW ¥ M1 (e} + Ry (e} =0, (19}

where Py lg), Oyle), and R, (g) are polynomials of degree ¥
determined from the conditions

Py(2) [E(e) I*+Qn{e) E(e)+Ru{e) =0(s’"""), Py(0)=1.
(20)

In (20) the function K (¢) is represented by the Taylor series (4]
in powers of £ with known coeflicients. The 3¥ + 2 un-
known coeflicients of the polynomials Py, @, R, are found
by the solutions of a set of linear equations.

The convergence of the approximants to the energy of
the 2p;,, state for § = 0 and for values £ = (.23 and 0.26 is
demonstrated in Table 11, where values of cne branch of the
function E M) are given. The imaginary part of the
function is shown in parentheses. The values of Re E '[¢) and
ImF ‘{e} for the 2p state for £ > £, completely correspond to
results obtained by the method of conformal mapping. '*

According to the general results of Refs. 18 and 19, the
dependence of ImE ;; on ¢ for / £0 close to threshold 1s ac-

curately described by the relation
Im E,, (e)=Cs(nl) (e—e.)""". 121)

For the 2p,,, and 3p, , statesatf = O we have Cj{2p) = 0.42
and Cy(3p) = 0.36.

We also considered approximants of higher degree
(third, fourth, and fifth degree). In all cases the results were
found to be self-consistent.

In Fig. 2 the dependence of the magnitude of the doub-
let splitting of the 2p levels (E,, —E,, }i1sshown asa
function of € divided by Z °. The results obtained using Padé
approximants [8/8] and {13/12] differ by less than 10~ ° for
all Z.

g ar
g g8es
zsz,;f : S
i 7y #2171 gis 0.2 ¢

FIG. 2. Magnitude of the doublet splitting of the 2p level as a funcuon of £
[tn atomic units).
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From the recurrence relations {13} and {14) we obtaip
directly

E1=—‘F1; E1=2H1V1 (k'*"sz;—S‘\?EE:) y
E=2""V W [ B —1+EE. (3+2KE.)—v (1+4E ) |;
EiEZ‘JVE {Bvik+3sz: {V-i.‘l-vlz) +2k3 (VEE_BV‘-)

+RE2V? (4 HRE.) K E 2V, —3V,)
+3[BEV, (1-+4E ) —5E . (5V.+ V)
+OK'E, (BV+ V. +6E2 2V — V') ]
' E[-3(bV 4V HEEA (V. —4V.) 1}

E,=2"y*{—12V+10LE . (DV+V.V,)
FE(1BV s+ V.V, ) HARPE  (BV -+ BTV, V,)
+4EE 2 (2V,Vy—-3V,) 8K E V.V,
—30B*E (V,—E V., V,) =k (3V.+ V.V,
+VIBEKE (DV 14V, V,) —3{1+6E.2) (BV,+3V,V,)
21 BV 5V V) H0RE 2 4V, — T, V,)
TA2KE 2 {4V +3V, V) H16KE S (V,—2V, V) ]
+ [24F V.V, — V) —3(V33V,. V)
—12E 23V +5V,V3) ]}

The expressions for £, E,, £, obtained in Ref. 14 agree
with our results.
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