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Abstract

The asvmptotics of large orders of the | /#-expansion is investigatcd for multidimensional problems of quantum mechanics
and atomic physics, including those with separable variables {(the hydrogen molccular ion HY ), and those where separation of
varables 1s impossible {a hydrogen atom 1n electric and magnetic fields ). It is shown that the parameters of the asymptotics can
be found by means of calculating sub-barrier trajectories with the help of the “imaginary timc™ mcthod, as well as by solution of

the eitkonal equation.

I. The 1/n-expansion 1s widely used in quantum
mcchanics and atomic physics, see ¢.g. Refs, [1-12].
The encrgy cigenvalucs (which arc complex for quas-
istationary states, E=FE,— 1i[") are represented in the
form of an expansion [2,4,5]
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where # is the principal quantum number, e=n2E,,
is the “reduced” encrgy of the sl state and k is the
order of the 1/n-expansion. This method was suc-
cessfully applied to the problems of atoms 1n strong
external fields [3.5-7]1. the hydrogen molecular 1on
Hi [6.8.9],etc. [2].

At present the behaviour of large orders of the 1/
n-expansion, i.e. of the coefficients € with &> 1,
has been mvestigated numerically [9,11] and analyt-
ically [12,13]. Here we continue our previous inves-
tigations [11-13] and present some results for mul-
tidimensional problems of quantum mechanics.
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In the problems considered earlier the asymptotics
has the form [11,13]

e s KlafkBlog 4o M+ L), hkooo {2}
ar
€ e Re(coa®) [1+O(k=1)] . 2

Here a, 5, ¢y, etc. arc calculable constants, the numer-
ical values of which depend on the problem consid-
cred. For the one-dimensional case {(e.g. for a poten-
tial with spherical symmetrv) the asvmptotical
parameter @ can be calculated from the equation [12]

a‘1:23ﬁj‘[U(r}—e'{m]”zdr, {3)
i

where U{ry=n7V{n°r)+{2¢7) "' is the effective po-
tential including the centrifugal energy, ¥(r) is the
initial potential in the Schridinger equation and
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ro<<r<f,1is the sub-barrier region . Since the cnergy
€‘?? corresponds te the minimum of the potential [V,
w0 lurning points coincide, r, =¥, The applications
of Eq. (3) to the bound and quasistationary states in
the Yukawa and Hulthen potcentials can be found in
Refs. [12,13].

2. Here we consider the problem of two Coulomb
centres,

Viry=—(4i/r+245/r) .
na= [Ptz IR)IYE, (4)

Procecding to the elliptic coordinates &= (r;+#,) /R,
n={(ri—r}/R and performing thc scaling
transformation 2

1

E=le. R'=AR, r=Ar, 1= — w
i —1

we armive at the Schrodinger equations with the effec-
tive encrgy e and effective potentials I'(&) and Vi),

TRZ
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(here Z;,=Z-=1, which corresponds to the hydrogen
molecular ion Hy , m=0, =1, £2 ... is the magnctic
guantum number and R is the internuclear dis-
tance}. The potential F(#) is shown in Fig. 1. If
R'>R, =3%%2"= then

Hn
a==2 | |p,

i
— M

[ —n3

" An analogous, though more complicated, formula can be ob-
tained for the pre-exponential factor . It can be also shown that
fi= — 2 for nodeless states in a sphencally symmetrical polential
[12].

* Further we consider the states with a maximal possible value of
m=n—1and choose A=1/{#*=2a). If the value »=n 7 is cho-
sen, the parameters g and fin Cg. (2) remain the same, unlikc
the pre-exponential cocfficiens ¢, ¢y, etc. Evidently, for the highly
excited slates, nx1, both valucs ol the scaling factor A are
equivalent.

which coincides with Eq. {(28) in Rcf. [12], see also
Ref. [8]. The value R=R, corresponds to the colli-
s10m of two classical clectron orbits in the field of two
Coulomb centres and is determined from the condi-
tion that the frequency of small oscillations near the
equilibrium orbit turns 1o zero (compare with the
analogous calculations in Ref. [6]). IFR'< R, then
Mo=0 and the (urning points are complex,
=14 (2¢) ~'<0. Therefore,

N

a1 =2 | (V) - 11(0)] 2 dy

K
— —2{Arth{=) <0 (7)

(D<<{<1). The dependence of th¢ variable ¢ on the
re¢duced internuclear distance R'=# R is deter-
mined parametrically,

c=(2e+ )12 =(1-30)!"* (1 —1)~1,
R'=1/4{1-7)7% 0O<1<; (8)

(r=1 corrcsponds 10 {=0 and R'=R_). So, the
asymptotical parameter a(R )Y in Eq. (2) is obtained
in analytical form for any R.

From Eqs. (6)-(8) it follows thatat R'-» R _,

R —R,
R 3

*

where 4. =372 and 4. =—1(2/3)"2. Calculation
of the parameter ¢ by Eqs. (6)—(8) gives curve | in
Fig. 2.

It Z,#7Z,, the potential F(n) is not symmetrical
any more, scc Fig, Ic. The calculations arc performed
1n a similar way as in the case Z, = 7, but the analyt-
tcal formulae become more complicated (the calcu-
lation details will be published elsewhere). Just as for
the discrete states in the Yukawa potential [4], the
turning point £ moves into the complex plane, the
parameter ¢ becomes complex and Eq. (2') holds.
Here |a(R)| <co for any R (see Fig. 2), since the
collision of classical orbits does not occur at 2, # s,
as opposed to the case of two equal charges. Wote that
the parameter a{R) -0 at R -0 and R—co. In these
Iimiting cases the problem of two Coulomb centres is
reduced to the hydrogen-like atom.

Let us compare these results with that of Ref. [9],
where large-order dimensional perturbation theory for
the HY ion was considercd and the singularity of the

a(R)y=A_ 8| [14+0(1)], h=

(9)
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Fig. 1. The effective potential ¥i#n) : (a) at R'> R, =1.299, (b) at 0<R' <R, (c) for Z,= 7, Here R'=n 2R, R is the internuclear

distance.
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Fig. 2. The parameter of the asymptotics (2) for the problem of two Coulomb cenires. Curves 1-4 correspond to Z,/ Z, =1, 2, 2and 3.

Borel transform closest to the origin, d,=(2a) ~', was
calcuiated numerically with the help of the quadratic
PPade approximants. The agreement between Ref. [9]
and our formula {7) 1s excellent, see Table 1. Nole
that only the case of B'< R, was considered in Ref.
[9], where a(R") <0, so the series (2) is alternating
in sign and the singularity of the Borel transform does
not lie on the path of integration.

3. We consider a hydrogen atom in external fields,
the case of uniform and parallel fields ¢ and 3 and
(0, 0, n—1} states with magnctic quantum number
m=rn—1, which correspond to circular electron or-
bits {at n=> 1), The 1/#n-expansion 1s constructed

-
around the classical orbit with radius rp=rq(F, By,

determined from the equation [ 7]

P(1—F 21+ 1821 = ] (10)

(we use atomic units, A=e=mi.=1, and reduced
variables F=#n*# and B=n>2#, convenient in the case
of Rydberg, #3 |, states),

To determine the asymplotical parameter ¢ the
“Lmaginary time” method was used, previously de-
veloped [ 14] for calculation of the tunneling proba-
bility through barriers, varving in time (e.g. in the
theory of multiphoton 1onization of atoms and lons
by a strong Light wave [15], as well as for calculation
of ¢*¢™ pair production from vacuum by a varying
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Table 1
Yalucs of the Borel parameter 8, for the bvdrogen molecular ion

1.5R Oy Method of calenlation
0.2 — 1.720950 a
(.4 — 1.062376 a
.6 —(L703527 a
0.8 —(L474800620 a
—(.474793 ¢
1.0 —~0.313841191 a
— 031384121 g
1.2 —.19751662152 a
~0.19751661876 C
|4 —0.112797 a
1.6 —0.052543 a
1.8 — 0013569 a
2.0 0.003681 b
2.2 (.038463 b
2.3 0.119351 b
3.0 (.294] 64 b
5.0 1.2020939 bt
10.0 3.943250 b

Notations: {a) the calculation of dy= (22}~ by Eq. (7)., (b} by
Eq. {6). {c) 4y from Ref, [9]. Note that the definition of the
scaled internuclear distance in Ref, [9] differs from ours by the
factor 3.

electric field [16]). The classical trajectory (!},
which joins the point ry of maximum efteciive poten-

tial T,

» r 1 l 1 22,2

L(r}=—t': ; — E—E +F"—EH I
p=(x*+y")'"°, (11)

with the turning poini r; g, was found by numerical
integration (here ¢ 15 an 1soenergetical surface, e.g.
L{r.Y=U(ry)). The condition ry=#,=0 sclects the
sub-barrier trajectory, which mimirnizes Im S [14].
Then the parameter a=a(F. B) im Eq. {2) 1s equal
to

a=(2ImS)~", 8=

3 ]

pdr= If--‘de (12)
1]

where F=dr/dt and =171 is “imaginary 1im¢”, Note
that {7 differs in sign from the potential U entering
the Schrodinger equation, which exactly corresponds
to the descripltion of the sub-barrier motion of a par-
ticle in terms of the imaginary time method. Since
F=VI'=0 at r=r,, the tim¢ of motion 7 along the

above trajectory 1s infinite. The lines of constant po-
tential {7 (dashed curves) and a few classical trajec-
tories (solid curves) are given in Fig. 3. The integral
S 1n Eq. (12) was calculated from the initial point
r.& 10 the point v, of closest approach of the trajec-
lory 1o the point of unstable equilibrium r,. Since the
potential £(r) is approximated at r~ ¥, by the poten-
tial of the “upturned osciliator™, any trajectory is un-
stable. The trayectories in Fig. 3 correspond to initial
deviations Ap, shown in Table 2. Although 1t is im-
possible 10 gel from rye @ precisely to ¥y in numerical
calculations, the value of Im .S is readily d¢termined.,
It can be shown that at small Ap

[1—Im S/So| ~ (Ap/ L)%,

1
ey In(L/14p]), (13)
where L= |k —ry|, @, are the frequencies of normal
vibrations at ¥ ry, and the action S, corresponds to
the above trajectory, which connects the point r, with
the isoenergetic surface a.

The results of the calculations (al F<F,) are
shown in Fig. 4. Here F, 1s the classical tonization
threshold, £, {#)=0.2081, 0.2207, 0.2532 and
0.3445 at B=0, 0.25, 0.5 and 1.0. At F'=F_the points
r» and r, converge, and the potential (11} takes the
torm V=V,+ag—38¢°, where axcF, —F-0 and
F~ 1. Taking Eq. (3) into account, we find that

LE
a =2 .[ (—p= )Y dgoca®,

4o
aog (7, —F)=>'%, (14)
50 the parameter @ has a power singularity at F=F,

of the same type as in the one-dimensional case [12].

4. Let us also give g brief description of the alter-
native calculation method for the aciion S along the
sub-barricr trajectory, based on solution of the Ham-
ilton-Jacobi (HJT}, or eikonal equation,

(VY =2(U-1h), Us=U(n). (13)

Choosing the origin at the poinl r, and axes x, ¥ (nor-
mal coordinates ), we get at r iy

Ulx, p) =0+ joix* + lwiv i+ ..,
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Fig. 3. The sub-bammer trajectories for the potential (11). The values of parameters for trajectorics Nos. 1-8 are given in Table 2. Here p

and / are the cylindric coordinates of the electron, the nueleus {proton ) 18 located al p==z=10,

Table 2
Convergence of the Im 5 values (F=0.13 B=0.2and F_=0.2163}

Tmaginary time method

Solution of the HI

cquation
No. Ap Ar T Im .5 N Im .S
1 (.1 1.396 6.16 0.345 15 (0,39524
2 — .1 1. 4]1 4,92 1.424 1§ 0.40072
3 (.01 [.692 8.35 0.393 28 (L4011278
4 —0.01% 0073 7.80 0.412 33 (4011270
5 10-4 (0.1347 F1.35 0.40106 38 0.401 126879
a — 104 0.1335 11.24 0.401286
7 10-° (0.0247 13.93 0.4011264
] —~10-¢ 0.0246 13.91 04011278
- 10-# 0.0045 16.435 0,401 12688
- ~10-# 0.0045 16.45 {0.401 12689
— ~ (] ~ 1073 ~ 210) 0.401126870

Nos. 1-8 in the table correspond 1o the numbers of the curves in Fig. 3. Here Ar= |#,—r;l is the distance of closesl approach of the

classical trajeclory 1o the point of (unstable) equilibrium ry, 7 1s the time of motion from the inital point r; 10 ¥,

X v

S{x, v)= J.i:dx+ ijd}-‘
L 0

=X+ m i)+ ... (16)

Substituting the cxpansions

U= 3 upx'y", (17)

Shk=0

S= 3 syt
FR

into the HJ eguation, we arrive al the recurrence
relations
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Fig. 4. The parameter |a(F, B} | versus the ratio //F,_( B). The values of the reduced magnetic figld B are shown besides the curves.

n—21 r
Fj-k:{_jm1+kmdg)_l(ﬂj‘k—% Z z [(Q""I}

p=2 g="0

X {J—g+1 }5q+1,e‘3j—q+ | h—d

+(‘r+l](k_"!_i_I}L?q,f+]£j—g,ﬁc—1+]]) (18)

(n=j+ k=3, {=p—gq), from which the coefficients s,

can be calculated subsequently. For example,
Soa=(3m:) tys, So={w +2m) " 'uy,,
_J321.= (2en + ) iy,
Sii={; +3w) "
X [ty3 — 252052, + 35550 1, . . (17")

It 15 easy to obtain 5; up to n~ 50 with a computer,
thus allowing one to use summation methods for di-
vergent (or slowly convergent) series, So we proceed
10 a power series 1n one variable 2,

W) =S0x )= 3 ",

Ju= Zﬂ -?j.n—jx{l’n_j (19)
_.r:

(0</Z<1). Then the value f{1) is calculated by Padé
(PA) or Hermite-Padé { HPA) approximants.

The sub-barrier trajectory ends at the turning point
r,, where the line S=.5; contacts the isoenergetic sur-
face U=Uj, and d,5=0,5=0. The derivatives 4,8
have a square root singularity at ¥=r,, therefore the
calculation of # with high precision requires some
effort 2. Table 2 illustrates the rapid convergence of
the 5 values with growing order of approximation (¥
1s the number of the cocfficients f, included into cal-
culation). It is ¢vident from Table 2, that both meth-
ods used are 1n full agreement, thus providing the ac-
curacy ~ 10~% in the .S, values.

Note that the series (16) for S{x, ¥} should be
summed at the isoenergetic surface o, where the an-
harmonicity of the potential L/(x, y) is not small any
more. The precise values of S, can be obtained only
due to the availability of high-order coefficients s,
with #=7+ k= | and the application of the cffective
methods for the summation of series .

3 For this purpose, we have used a special modification of the
HPA. where the solution of the equations for r, was obtained by
& minimization procedure {calculation details will be published
elsewhere).
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5. If £=0 or # =0, the parameter g can be calcu-
lated analytically, Let us consider the Zeeman ctfect
for the (0, 0, n—1) states in a hvdrogen atom. Tt is
convenient 1o begin with the case of imaginary mag-
netic field, or the funncl-like potential F{r)=
—r~1—lgri where g= — | #?> 0. Using Eq. (3) and
calculating the penetrability of the barricr in this po-
tential, after some algebra wc get

B 31;’2(1_132) 3|f22,
{2&] I ..i'_l?_:;g)zu'z Elrtlgz(l_zz}”l
3z
—Arth ———. (20)
E."=(]‘|‘l':"}wE
=l+%ﬁz—%ﬂq+...: -0,

=2-3X2-¥2B-11240(B-), Boco,

where 0=3(1—=r,) and r,(B) 1s the radius of the
classical orbit determined by Eq. (10). Since 23 1,
the value of @ for the Zecman cffect is obtained from
Eq. (20) with the help of analytic continuation, the
paramcler a{ B) becomes complex and finite for all
8. In particular, 1n the region of weak magnctic fields
B 2
ﬂ(ﬁ}=il;+;32h‘lﬂ+ ey B 1) (21}
and |a| =2~ 'B+0(B?). The parameter |a(B)| has
a maximum at 8=8_x~195, where |a(B,)|=
00,2133, Note that fa{wc) | =1/27=0.1592, but the
iunit 1s achieved only in very strong magnetic fields,

i

EI{B): + 7

(1 +(2B)~ 12
i

- 23.-’2?1-

B-Y2InB+ ) (22)

IH{B)]=$<1+(ZB]—”3

1 In’B L
s +O(B mB))j

B—oo {22a)

Note that the two signs in Egs. (21), (22) corre-
spond to the complex conjugate singularities, J, and
g5, of the Borel function, so the asvmpiotics of €'*) 1s
of the type (2'). |

If # =0 (the Stark effect in hvdrogen). then a(F)
Is determined by Eqs. {16}, {17)1n Ref, [13].

6. Thus, the cocfficients of the 1/#-expansion €
grow as k! at A—oc, and the series {1) is divergent
(analogous to the well-known “Dyson phenomenon™
for the usual perturbation scries in quantum mechan-
ics and field theory [17]). In many cases the asvmp-
lotical parameters (g, §, etc.) can be found analyti-
callv, otherwise the calculation of the sub-barricr
trajectory by the “1maginary time” methad can be
applied for the purpose. The use of the above param-
cters in the summation of series (1) considerably en-
hances the accuracy of the calculations of the energy
gigenvalues by the 1/n-expansion, as can bc shown
with a number of examples. However, this question
would require too much space, so we shall leave 1t till
a more detailed publication.

The authors are grateful to Professor V.D. Mur tor
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comments, and 1o M.N. Markina for her help in pre-
paring the manuscript. The work was supported 1n
part by the Russian Fund for Fundamental Research
(project 93-02-14368) and the International Science
Foundation {ISF grant Ph 1-2292-09235).
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