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Abstract. Quadratic Padé approximants are nsed to obtain energy tevels both for the anharmonic
oscillator x2/2 — Ax* and for the double well —x2/2+ ix*. In the first case, the complex-valued
energy of the resonances 15 reprodoced by summmation of the reqf terms of the perturbation
series. The second case is treated formaliy as an anharmonic oscillator with a purely imaginary
frequency. We use the expansion around the central maximum of the potential to obtain a
complex perturbation series on the unphysical sheet of the epergy function. Then, we perform
an analytical continnation of this solution to the neighbouring physical sheet taking intc account
the supplementary branch of guadsatic approximants. ln this way we can reconstruct the real
energy by summation of the complex series. Such an unusuval appreach eliminates the double
degeneracy of states that makes ordinary pertnrbation theory (around the minima of the double-
well potential) incorect.

As a rule, perturbation series for energy levels in quantum mechanics have a zero radius
of convergence. So, generalized summation methods that enable one to continue a Taylor
series outside of its circle of convergence are commonly used. The classical example 1s the
divergence of the perturbation series for the anharmonic oscillator (Bender and Wu 1973)
and the summability of this series by Padé approximants (Loeffel et af 1969).

In general, the energy levels represent the sheets of some multi-valued analytic function.
The natural generalization of the ordinary Padé approximants to the case of mulir-valued
functions is a quadratic Padé approximant (QPA) introduced by Shafer (1974). The *diagonal’
QPA to the function f(z) is defined as a double-valued solution of a quadratic equation:

fiv.v.m(@) = 2A) ' [-B £ (B* ~4AC)'") (M
where A, B and ' are polynomials of degree N which satisfy
AQR) () + B f () + C(2) = o(z™" ). . (2)

Thus, fiv.n.~(z) can be computed from the first 3 + 2 terms of the Taylor expansion for

FD.

This type of approximant is a special case of the generalized Padé—Hermite approximant
extensively studied by Della Dora and Di-Crescenzo (1979). The coefficients of Padé-
Hermite polynomials are determined by solving the system of linear algebraic. equations,
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Together with QPA, Common (1982) considered ‘integral’ and ‘differential’ Padé-Hermite
approximants also having branch-point structure,

The main branch of QPA re-generates the Taylor expansion for the initial function up
to the order z*"*!. It transfers to the second sheet at square-root branch points where
the discriminant becomes zero. So, QPA can approximate both poles and cuts. Moreover, |
it can reconsiruct to some extent the neighbouring sheets of the multi-valued function.
Numerical results of Short (1979) indicate that Qpa provides a practical method for the
analytic continuation of a function from one Riemann sheet to another.

In the first part of this paper we apply the QPA to the function having a cut on the positive
real axis; this is the case when the ordinary Padé approximants fail to converge because of
an accumuiation of poles on the cut (Baker 1975). The function to be approximated is a
complex energy of resonances, £ = E,£iI'/2, the plus sign corresponding to the incoming
wave, and the minus sign corresponding to the outgoing wave boundary conditions. The real
part £ defines a position of the level, and [ is its width. This approach is not completely
new. Earlier, QPA were applied to the quasi-stationary states in a Yukawa potential (Sergeev
and Sherstyuk 1984} and for a Stark effect in a hydrogen atom (Vainberg et al 1987). More
ingenious summation procedures such as the modification of Padé approximants (Reinhardt
1982} and the Padé-Borel method (Franceschini ef al 1985} were also considered for a
Stark effect. |

Here, we illustrate the convergence of Qpa for the oscillator with negative quartic
anharmonicity

Vix) =x%/2 — axt. (3)
The expansion for the energy
EQy=n—+3—32n° +2n+ DA — 1(34n° 4 510> +- 590 + 21)02 ~ ... (4)

where n is a quantum number, can be easily computed up to higher orders. To calculate
a ‘diagonal’ QPA we use a fast algorithm based on a four-term recurrence relation (Mayer
andd Tong 1983, Sergeev 1986) and resembling the method of continued fractions for the
diagonal Pad¢ sequence. Two values of the QPA prove to be complex conjugate except
where the parameter A is too small. We present the values of the QPA in table 1, retaining
anly the stable digits which are common for the three approximants [12,12,12], [13,13,13]
and [14,14,14). Our results appear to be slightly more accurate than the earlier numerical
results of Drummond (1982) which are also given in table 1.

Further, we note that the problem in question can be converted into a problem with the
potential

Ulx) = g(x?/2 — x% (5)

by the scaling x — A~'/“x, The corresponding eigenvalues depending on a coupling
constant are

e(g) = g P E(g~1%), (6)

S0, the large g limit is in a close relation with the small A asymptotics for the initial potential
Vix).

For positive g, e(g) gives the complex energy of resonances, The behaviour at large g
is

slgy =+ 38" =22 +2n + 1) = 2(34n” +- 5107 + 590+ 21)g 72 = .. .. (N
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Table 1. The double energy of resenances 2L (to make an easier comparison with previous
results) obtained by summation of the perturbation series for a potential x2/2 — Ax* by gpa.

Ground state, n =0 First excited state, ## = 1
A Real Imaginary Real Imaginary
(.01 (0.984 427 &7 0.000 0000 202028216 0.000 000

Q.02 0.967 45124 {0.000 000 60 2.827 10262 (L.OG0 08903
(0.967 451 24+ 0.000 000 60¢

0.05 0.900 67290 0.006693 28 2.448 334 0.153 195
(.900 67° 0.006 69¢

.1 0.794 88 ] 0.089412 2.19250 G677 32
0.7949* (0.08944

0.2 0.728 32 0.277 35 2.1652 1.3905
{.7288* 0.2773%

0.5 Q0.7477 0.6100 241 2.51
0.74774 0.6100%

1.0 0.8297 09097 2.78 3.53

2.0 0.964 1.260 3.3 4.73

540 1.23 |.54 4.3 6.8

" The resnits obtained by Runge-Kuna integrations (Drummond 1982).

When g 1s negative, £(g) represents the bound-state energy in a double-well potential having
an asymptotic expansion in powers of (-g)~'/%:

2 2
gﬁ+“;_(2;:+1)(-g)”3—(3n?—+3n+ |)—§(34n3+51n2+35n+9)(—g}‘”2—- "

1
(8}

£(g) =

This is equivalent to the expansion studied by Damburg and Propin (1971). The index
+ denotes the parity of states. So, the levels are not defined without ambiguity by the
series, and difficulties arise if we try to sum expansion (8). Borel resummation gives
a complex result coinciding with the energy of a resonance in a quite different problem
(Seznec and Zinn-Justin 1979). Here, we hope to overcome the difficulty related to double
degeneracy of states by summation of expansion (7) for negative values of g (the parameter
of the expansion will be i(—g)~!/%), Of course, the main branch of function (7) yields
some unphysical complex eigenvalues if g < 0. We conjecture that this function can be
analytically continued so that its second branch would give a real bound-state energy.

For the potential (3), the analytic properties of bound and resonance energies as functions
of the coupling constant were studied extensively by Shanley (1989). Using a complex
scaling argument he found that the guantum levels in a potential and its inversion are
intumately related. Here, we are going to exploit the fact that the energies of both types of
states are joined at branch points. So, one of these energies can be abtained from another
energy by analytic continuation.

As a justification for our conjecture, let us temporarily consider a much simpler prototype
model with a pair of zero range potentials:

Ux) = glé(x ~ 1)+ 8(x + D] (9)
The equation for the energy function is

k(i + tank) = 2g E(g) =k*/2 (10)
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(the odd parity states are not regarded here but they may be treated similarly). Because the
energies both for resonances (g > () and for bound states (g < () may be obtained from
the same general equation (10), they represent different branches of a single multi-valued
function.

If g < 0, it 1s convenient to rewrile equation (10) using a customary notation ¥ = —ik:
x(] + thx) = =2g = —x%/2. (11)

Equation (11) has a single real solution so only one bound state exists; its energy tends to
—22/2 when g — —ox.

It will be instructive to observe what happens to this ground-state energy as g moves
along the real axis. When g becomes positive, the bound state smoothly transforms into
a virtual state without any singulanty. When g reaches a branch point gy, = 0.1392, this
is the solution of the transcendental equation 2g + In(2g} + 1 = 0, the complex-conjugate
energies of resonances arise as a result of a collision of two virtual levels and the energy has
a square-root singularity. At a large g hmit, the problem is equivalent to the rectangular-
shape potential with infinitely high walls, and the ground-state energy is 7w%/8.

The zero-range model (9) 1s also an Instructive example regarding the summability of
the perturbation series. For negative g the energy behaves as

2 2

e(g) = _% — gle® (%- + 2g3) e — (2g° + 6gHe® — ... g = —00. (12)

If we try to expand (12) in negative powers of g and then surn the expansion we obtain the
wrong answer —g2/2 because we negiect exponentially smail terms.

In the opposite himt, the large g behaviour of the energy takes the form of an expansion
in powers of 1/g:

R e+ T 3 timg 1

e(g) =

The sertes (13) can be summed at large {g| to an analytic function. For negative g, the
real solution (12) having an essential singularity at infinity can be obtained by amalytic
continuation of this function along a contour embracing the point gg:.

Now let us consider the double well

Vow(x) = —x?/2 + ix* (14)

that 1s related to the coupling problem (35) for negative g. We expect that the spectral
Riemann surface for problem (5) has a structure resembling the case of the zero-range
model {9). So, treating (I4) formally as a perturbed harmonic oscillator with a frequency
o =1 (@ = —i would be equally suitable), we obtain the expansion on the unphysical sheet
of the energy function:

EpwM)=(n+i— 22> +2n+ Di+ 3340 +5tn° + 59 +2DiA* +--.. (15)
The complex expansion coefficient can be easily found using the relation

Elw () = iE(—id) (16}
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and expansion (4). Then, we calculate QPA. Numerical evidence is that the second
(supplementary} branch of the QPA is rather close to the bound-state energy, but the results
are not as perfect as in the case of the anharmonic oscillator. One of the reasons may be
the fact that the actual expansion of the energy (from the perturbation theory arcund the
minima of a double-well potential} has a pole at A = (:

J3 3

1:39.. + 22{2” 1= Gt 34 DA - 72(341'13 +51n% 4+ 350+ 92 — ..
(17)

Epw(X) = —

simply because the potential has no minimuem when A = 0. QPA defined by equation (1)
has no such pole unless A{() = 0.

In order to account for thts pole, we also calculate a shghtly modifted QPA that 15 defined
by equations (1) and (2} with the substitution A{z} — zA(z). Two branches of QPA are
given in table 2, The supplementary branch of QPA is proved to approximate the exact
ground-state energy (found by numerical integration of the Schrédinger equation) to within
an accuracy of about 0.01 unless the parameter A becomes too small or teo large. The
surprising result is that the real energy can be calculated by summation of the complex
perturbation series {cf with the former resonance problem when the complex energy was
obtained by summation of the real perturbation serics). The accuracy is expected to rise
if an essential singularity of the energy at A = 0 and the cubic-root singularity at A = o0
could be incorporated by a further modification of QPA.

Tahle 2. Summaticn of the complex perturbation series on the unphysical sheet of the energy
function for the double-well potential. Modified gra [12.12.12] is presented.

Main branch Aupplementary branch
A Eeal Imaginary Real Imaginary
0.1 —0.064 75096 051714256 —0.150 —0.020)
-0.1541*
015 —{.08B86Gl672 0.530293 58 0.004 0.002
—0.0026%
0.2 —0.108 73533 0.543 574 55 0.086 (005
0.08504
0.3 ~D.141 57605 0.56899343 0.192 0,000
0. 1960¢
0.5 —0.190 3929 0.6140138 0.330 ~ (3005
.3288¢
0.7 —-0.227 162 0.652 653 0.425 —0.002
0.4173*
1.0 —{.270 343 0.702 275 0.522 0.005
0.5148*
1.5 ~{).323 10 0. 77056 0.625 0.017
0.63204
2.0 ~{). 3680 0.8274 0.698 0,010
072304
3.0 —{.435 0.9204 (.822 —0.024
(1.BalB!
50 —).532 1.062 1. 036 —0.0%0
| .D564%

* Exact ground-state energy in a double well.
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The physical interpretation of the complex quantity obtained from the main branch
of QPA remains unclear for us because there are no resonances for such a problem. The
only conjecture we can suppose is that it is very close to the energy of the broad unstable
resonance in the medified inverse-well potential

—x212 + ax* x| € 1/2/%

18
—~1/16x x| > 1/2+/%. (18

Viw(x) = |

The complex expansion around the central maximum invites further applications for
other symmetrical potentials. Generally, the method may be useful for the cases when the
energy has exponentially smalt terms neglected by perturbation theory. An example is the
Killingbeck potential

Viry=—1/r+2xr + 2237 (19)
having a finite asymptotic expansion for the ground-state energy
E(M) =—1/243x (20)

but 115 sum was proved not to be identical to the energy when A < 0 (Killingbeck 1978).

In one dimension, the simplest way to obtain the energy remains a direct integration of
the Schrodinger equation, Nevertheless, the method may be of a practical importance for
multi-dimensicnal potentials, where the coefficients of the perturbation expansion can also
be exactly computed up to an arbitrary order,
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