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Abstract — A procedure is considered for extracting the purely nuclear scatiering length a, and effective range
r, (which correspond to a strong-interaction potential V, with disregarded Coulomb interaction) from the exper-
imentally determined nuclear quanuties @, and r,., which are modified by Coulomb interaction. The Coulomb
renormalization of @, and r, is especially strong if the system under study involves a level with energy close 1o
zero (on the nuclear scale). This applies to formulas that determine the Coulomb renommalization of the low-
energy parameters of 5 scattering (/ = 0). Detailed numerical calculations are performed for coefficients appear-
ing in the equations that determine Coulomb corrections for various models of the potential V (r). This makes

it possible to draw qualitative conclusions about the d

ependence of Coulomb corrections on the form of the

strong-interaction potential and, in particutar, on its small-distance behavior. A considerable enhancement of
Coulomb cormrections to the effective range r, 1s found for potentials with a bamier,

. INTRODUCTION

Calculation of Coulomb corrections to the parame-
ters of low-energy scattering, such as the scattering

length a_f ", the effective range r: " and the shape coef-
ficient P (at ! = 0, where [ is the angular momentum), is
important for various applications. The related prob-
lens were considered by many authors (see, for exam-
ple, [1 - 12] and references therein). The general
expressions for Coulomb corrections in a state with
arbitrary angular momentum were obtained in [10, 11].
The cormrections to the scattering length for s-wave
scattertng (! = () were considered previcusly by
Schwinger [1] (see also [3, 4]). Specific numerical cai-
culations were performed for a limited oumber of
potentials [11], as this work requires a lot of machine
time. This hampers detailed investigation of the depen-
dence of Coulomb corrections on the form of the
strong-interaction potential V (r) and, in particular, on
its smail-distance behavior.

In this study, we aim at filling this gap. The exposi-
tion 1s as follows. In Section 2 and Appendix A, we
present a compendium of formulas that are used to cal-
culate Coulomb corrections to the s-wave scattering
length and to the effective range (! = 0) for an arbitrary
local potential V(). In Sections 3 and 4, we give an
account of numerical results abtained for a large num-
ber of short-range potentials, including the Yokawa and
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Hulthén potentials, which are often used in atomic and
nuclear physics (the results for Coulomb corrections in
the ground state are presented in Section 3, and excited
states are considered Section 4). Section 5 is devoted to
Coulomb corrections for potentials with a barrier. The
results are briefly summarized in Section 6. Some
ictai:ls gl’ the calculations are described in Appendices
and B.

In this study, we confine our analysis to [ = () states
and to the resonant case in which there is a shallow
nuciear level (real, viraal, or quasistationary) in the
strong-interaction potential V,; here, Coulomb correc-

tions to the s-scattering length are most significant. In
()

X

the following, we omit the index [ and set a

(0)
a.. =d., etc,

[ |

F—
= da,,

2. COULOMB RENORMALIZATION
OF THE PARAMETERS
OF LOW-ENERGY s SCATTERING

The leading (logarithmic) term in the Coulomb cor-
rection to the scattering length 1s determined by the
Schwinger formula (see [1] and equations (342) - (348)
}n [3]). In the resonant case, this formula assumes the
orm

1 I 20
-~ = 22, (1)
Hc: ﬂ.r ﬂﬂ'
where
p dr . 2R
o = [ -8 - R -m== —2¢. (1)
. r Qg
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COULOMB CORRECTIONS 63

a, and a, are the nuclear scattering length (for disre-
garded Coulomb interaction — that is, for a; —= oo} and
nuclear scattering length modified by Coulomb interac-
tion, ay = A*/me’|Z,Z,] i1s the Bohr radius, ¢ =
sgn(Z,Z,) = 11, ry is the strong-interaction range, C =
0.5772... is the Buler constant, 8(x) = (1/2)[1 + sgnx] is
the Heaviside step function, and ¥4(r) is the wave func-
tion in the strong-interaction potential V, for the cou-
pling-constant value at which an s level anises in this

potential.>) Hereafter, we use the system of units in
which £ = m = 1, where m 15 the reduced mass of the
system under study.

We set

vir = ——-‘E-f vir/ry), (2)

2ry

where g is the dimensionless coupling constant, and the
function v(x) determines the form of the strong-interac-
tion potential. The wave function y, and the coupling
constant g, that correspond to the emergence of an s
level are determined from the Schrédinger equation

Ao TEVX)N, = 0, x = r/ry, (3)
with boundary condttions

Xolx)=x for x —= 0,

lim y,(x) = 1 (3a)

-

(the last condition fixes the normalization of ).

Equation (1a) involves an arbitrary parameter R > G
that i1s necessary for convergence of the integral. By dif-
ferentiating (1a) with respect to R, we can easily show
that J, 1s independent of R.

Corrections to the Schwinger formula in the approx-
tmation linear in

8 =r/ay 8 =r/a, (4)

were obtained i {10, 11]. It 15 convenient to represent

the result in the form®

s}
,}__.,1_=__.{1n§3
a. a B

(5)

[ h)

+2[cy— 0, B-b,D +¢, 0 + 5,88 +...1 },

where c, = 2C + In(2r-/r,), while r, and r. are the effec-
tive range and Coulomb radius of the system that comre-

Yor r & ry. the total potential has the form V(ir) = V,_ + V- =

S/agr, where 6 = | for Coulomb repuision {dt, 4'He, ag, etc.,
systems) and o = -1 for attraction {for example, for hadronic

atams pp, K p.oeic.).
41 This expression contains only terms of the form &% and & = '§,,
k=1
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spond to the emergence of the 5 level; that is, they are
given by

r,= 2ry| 11 =2x)] dx,
0

- (6)
Fo = ry eXp {IHR+J-[B(I—R)- x;{x)] ?} :
0

Thus, r, and r are completely determined by the wave
function x,. Explicit expressions for the dimensionless
coefhicients b and ¢, which additionally depend on the
form of the potential v(x), are presented in Appendix A,
where we also describe some details of numerical cal-
culations.

The coefficients b, and ¢, can be found for some
extremely simple models (for example, for a 5-function
potential); however, general expressions for these coef-
ficients in an arbitrary potential V {r} are not known at
present. In expansion (3), we will henceforth discard
terms of order 6° and 8%,, as well as higher-order terms.
The smaller the parameters 8 and 8_, the more accurate
results are obtained in this approximation. The condi-
tion d <€ 1 is fulfilled well for extremely light hadronic
systems (for example, in a proton—antiproton atorn and
in the pp system, we have r, < 3 fim, ag = 57.6 fm, and
& < 0.05). On the other hand, the condition [8,] < 1
implies that there 1s a shailow level (on the nuclear
scale) in the system under study because in this case,
the scattening lenpgth considerably exceeds the effective

range:.j} However, this is not always the case.

In contrast to (5), the Coulomb renormalization of
the effective range does not involve (for / = ) the large
logarithm Ind [11, 19, 20]; that is,

r./r,=1-acd-b8 + 0@, 83), (7

where r., ts the Coulomb-modified nuclear effective
range corresponding to the emergence of the s level in
the systemn (g = g,,), and r, the effective range only for
V{r) (at g = g,). The difference of the coupling con-
stants g, and g is given by (A.1), and the dimension-

less coefficients b, and ¢, are determined by equations
{(A.9) and (A.10).

31t js the situation that fallowed from the analysis [10, 13] of first

measurements [[4] of the nuclear shift of the pp-atom ground
state (however, these experimental data have not bezn confirmed
by later studies [15, 16]). The curment value of the nuclear shift
AE, . is about /15 of the spacing between the 15 and 25 levels of

the pp atom, while the scattering length averaged over spin states
is a, = —0.88 +0.84 fm (for details, see [[7]). Under such condi-

tons, there s obviously no shallow nuclear level in the pp sys-
tem. On the other hand, we have & = -0.11 for the pp system.

The smallness of &, is explained by the existence of a shallow
virmal 15, level in the np system and, by virtue of isotopic invari-
ance, in the nn systemn as well (see, for example, [183).
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Table 1. Parameters for the attracuon potenuals (1)
No. vix) £ X, p Cp £ b, ¢ b B
1 iy 1.6798 | 2.1200 | 03639 | 08367 | 0842 1.0s6 | —0.177 { 0.872 | 0441
2 |[(e¥~ e 25913 ( 1.3169 | 0.3671 | 0.8455 | 0.889 1.038 | —0.064 | 0839 | 0454
3 (e - B! | 1.0809 | 2.3610 | 0.37427] 0.8648 | 0974 1.000 0079 | 0792 | 0.587
4 |(e~ 1) 1.0000 | 3.0000 | 037431 | 0.8649 | 0.983 1.000 0.134 | 0778 | 0.500
5 {eu 2 1.7251 | 2.8376 | 03831 | 0.8880 | 1079 | 0957 0.271 | 0.731 0.295
6 [1/shx 06414 | 33318 | 03849 | 08929 | L1108 | 0947 0355 | 0704 | 0670
7 le (1 +x)7 3.6648 | 2.6954 | 03870 { 0.8983 | 1.120 | 0940 0328 | 0.711 0.144
B (e 1.4458 | 3.5408 | 03951 | 09150 | 1215 | 0503 0.512 | 0.651 0.270
9 |e*x 1.7510 | 1.0698 | 0.3961 | 09214 | 1243 | 0895 | 0630 | 0613 | 0732
10 |1/coshx 1.7716 | 3.6516 | 0.3992 | 09294 | 1257 | 0887 0.578 | 0.629 | 0.483
11 [2e*—e™ 0.8096 | 3.7054 | 0.3996 | 0.9302 | 1262 | 0.885 0.590 | 0625 | 0453
12 [+ 1! 1.7206 { 3.7831 | 04007 | 09332 | 1275 | 0880 0614 | 0.616 | 0.208
13 e (1 + %) 0.4673 | 45494 | 04036 | 0.9404 | 1307 | 0.869 0675 { 059 | 0.630
14 [{coshx)? 2.0000 | 2000 | 04655 | 0.9449 | 1.323 | 0862 0.693 | 0589 | 0.333
15 |x/shx 0.3285 | 4.8561 | 04074 | 09496 | 1.345 | 0.855 0738 | 0573 | 0830
16 |exp(-x?) 26840 | 14352 { 04184 | 09762 | 1457 | 0814 0936 | 0502 | 0.333
17 |exp(—x*) 2.8924 | 1.0687 | 04302 | 1.0041 | 1.564 | 0778 1.095 | 0442 | (.403

Nate: Here and in Table 2, the potential is taken in the form (2), x = rfry, x, = ry/ry, and p = re/r.. All quantities refer to the ground-state
level. The parameter B is defined in (A.1) and (A.3),

Table 2. Finite potentials

No. #(x) &; X p Co €y by €] b; B
I (1 -x)x 47638 | 0.4855 | 03947 | 09178 1.237 0.900 0.658 0.606 0.597
2 [(1—x)/x 3.0942 | 0.6260 | 04083 | 09420 | 1.338 0.858 0819 0.546 0.687
3|1/ 1.4458 | 0.8722 | 04218 | 09842 1.500 0.793 1.043 0.457 1.000
4 |1l—x T8373 | 07870 { 04286 | 1.0000 1.333 0. 780 1.OBD (0.443 0.202
S 11— 51217 | 0.8240 | 0.4319 § 1.0081 1.580 0.772 1122 (0.431 0.294
6 |1 —x* 3.3773 | 0.8694 | 04350 | 1.0152 1.605 0.765 1.153 0.419 0.377
7|1 24674 | 1.0000 | 0.4386 | 1.0234 i 1.634 0.757 1.189 0.405 0.500
¥ |d-function potential | 1.0000 | 1.3333 | 04549 | 1.0599 1.750 .750 1.312 0.375 1.000
9 | Breit potential 1.0000 | 2.0000 | 0.5000 | 1.1544 | 2.000 1.000 1.500 0.500 1.000

Let us proceed to the discussion of numerical
results.

3. NUMERICAL RESULTS

Using the above formulas, we calculated numeri-
cally the Coulomb corrections to 4, and r, for potentials
of the form (2) (see Table 1, in which all the quantities
are presemted for the ground-state level n = 1). The
effective range r, and the Coulomb radius r. are in
direct proportion to the parameter r,,, while the coeffi-
cients ¢y, ¢, b, ... are independent of this parameter;
these coefficients are determined by the form of the
function v(x) (that is, by the form of the strong-interac-

tion potential) and, of course, by the level number n. In
Table 1, the potentials are arranged in order of increas-
ing rc/r, = p. This presentation of data enables us to
reveal a remarkable correlation between this ratio and
the coefhcients ¢, and b,. The comesponding quantities
for finite potentials (that is, V. () =0 for r > r,) are pre-
seated 1n Table 2, where we introduced the notation
vix} = u(x)0(1 - x). Analysis of our numerical results
leads to the following conclusions.

(1) The coupling constant g, and the effective range
r, = xy undergo large vanations as we go over from
one polential to another, but they do not exhibit any reg-
ulanty, At the same time, the coefficients ¢, ¢, etc.,
which control the Coulomb corrections in (3) and (7),

PHYSICS OF ATOMIC NUCLEI Vol. 59 No. 1 1996
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are much more stable (for example, the coefficient ¢,
varies between =0.85 and 1.05 for all potentials from
Table 1. which includes polentials that are finite at the
origin and potentials that have a Coulomb singularity at
this point).

(2) The ratio p = r¢/r, is the main parameter that
determines Coulomb cotrections {especially the coeffi-
cients ¢, ¢, and b)). Given the parameter p, we can
predict the values of these coefficients to a high accu-
racy. On the other hand, the scattering lengths are
sharply varymg functions of the coupling constant g
and of the form of potential.

(3) From comparison of data presented in Tables |
and 2. it can be seen that the results obtained with finite
potentials are qualitatively similar to those for smooth
potentials, although the p values are greater for the
former than for the latter by some 10%. Table 2 also
includes two potentials that are determined by boundary
conditions. These are the d-function potential w{x) =
8(x — 1), which correspond to the condition (at r = ry)

= —H(P(Fn)‘ (E}

and the Breit potential [21, 22], for which we have
9

dr

= —gg(ry), @(r)=0 for O<r<r,. O)

g

In the last case, all quantities that determine the Cou-
lomb renormalization of a, and r, attain their maximum
values.

(4) Nuclear-physics calculations are often per-
formed with the Woods—Saxon potential

r‘R) +1] = {e"”‘+1)‘1,

a

v = [exp{ (10}

where d = R/a, a is the diffuseness parameter of a
nucleus, and R is its radius (for heavy nuclei, we have
a= 053 fm and d = 15 [23]). With increasing d, a
smooth transition from the case 4 = 0 (potential no. 12
from Table 1) to a rectangular well (d — o) occurs.
The resulting variations of all Coulomb corrections
prove to be monotonic, the coefficients ¢, by, etc.,
being virtually constant for d = 10.

(5) Inspection of data presented in Tables 1 and 2
reveals that, for the Yukawa potential, the parameter p

has a maximum value and the coefficient c| is negative
(otherwise, we have ¢, > 0). Unfortunately, general

expressions (A.10) and (A.11) for ¢, are rather cum-
bersome; in particular, no definitive conclusions can be
drawn about the sign of this coefficient. To clanfy the
situation, we considered the one-parameter famly of
potentials

) = he M) —e ™) Ao, (1)
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Fig. 1. Coefficient ¢, (solid curve) and ratio p (dashed
curve) for the potentials ( 1 1) as tunctions of the parameter A,

which includes the Yukawa potential (at A = 0); the
Hulthén potential (at A = 1}; and the potentials 1/sinhx
(A = 2), v(x) = 1/(sinhx) + 1/{coshx) (A = 4), and
wix) = (e¥ — &9 (A = —1). All these potentials have a
Coulomb singularity at the origin and exponentially
decrease at infinity; that 13,

X+ (A—2)}/2+0(x}, x—»

0 (11a)
{Alexp{—VvXx), X-—= oo,

V(I, ',1_} =

wherev=1forA>0andv=|A{+ 1forA<O{fA=0,
we have v(x, 0) = e~ /x for x — o} For A —= +o<, the
potential (11) is equivalent to an exponential potential.

The calculated values of p and ¢, are presented in
Fig 1. It can be seen from this figure that ¢} <0in arel-
atively broad range of A (A, <A <Aq, where Aq=0.656
and A, = A/(ho— 1) =—1.907). Figure | also shows that

p and ¢, attain minimum values at A = G (that is, for the
Yukawa potential).

(6) Tables 1 and 2 include potentials that are finite at
the origin and those that have a Coulomb singularity at
this point. Let us discuss the dependence of Coulomb
corrections on the behavior of the strong-interaction
potential at small distances in a more general case.
Assuming a power-law behavior of the potential V (r) at
the ongin, we set

wx) = x exp{—x) (12)

or

vix) = x 01 —x), (13)

where 0 < ¢ < 2. Figure 2 shows that the effective range
of the 1s state monotonically decreases with increasing
o [that is, with increasing strength of the singulanty of
V. (r) for r — 0]. The rate p = r. /7, and the coefficient
Co In (5) are virtnally constant in the range 0 S < 1.
Changes in these parameters become noticeable begin-
ning from & = 1.5. This is obviously associated with the
fact that at @ = 2, collapse into the origin occurs 1 the
potentials under study [18]. The resulting narrowing of
the region around r = O in which the wave function of



O
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1.00

0.75
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0.25

Fig. 2. Coefficient ¢y (solid curves) and effective range
(dashed curves) as funchions of « for potenhals with a
power-law singularity at the onigin. Curves {/2) and (/3)
comrespond Lo potentials defined by equations (12) and (13)
and refer to the ground state.

the bound state is locahized explatns a rapid decrease in
roand rcas o — 2.

4. EXCITED STATES

From the physical point of view, it ts natural to
expect that a shallow nuclear level (1f it exists in the sys-

Table 3. Coulomb corrections for excited ns states

MUR &1 al.

tem) comresponds to n ~ 1. For this reason, the ensving
analysis of Coulomb corrections for states with n > 1 is
of purely theoretical interest. Nonetheless, it is nseful
for getting a more comprehensive idea of the phenom-
enon.

We confine our analysis to two short-range poten-
tials (the Yukawa and Hulthén potentials). Numerical
calculations for the Yukawa potential were performed
up to n = 10, The exact solution is known for the
Hulthén potential [24]. With the aid of this solutjon, the
calculation of r, r, and Coulomb comections can be
reduced to a purely algebraic procedure {11]. This
makes it possibie lo obtain numerical results for much
larger values of n,

It can easily be seen that g, = n? for ns levels with
n > 1. Introducing the notation &, = g, /n? and using the
WKB method, we obtain

s

A = {Ef}@:ﬁ:} .

)

lim A=
H

B’

(14)

In particular, we have A, = /2 for the Yukawa potential
and A, = 1 for the Hulthén potential (from the exact
solution, it follows that in the latter case, A, is indepen-
dent of n).

The results of calculations are given in Table 3,
which displays r, and r- values and the most interesting
Coulomb corrections, We can see that r. and ri loga-
nthmically increase with increasing level number n.
This is associated with the fact that with increasing n,
the wave function xu(r} approaches the asymptotic

n A, X, P €o Cy b ) b
Yukawa potential
1 t 6798 2.120 (.3639 (0.837 0.842 1.056 0177 0.872
2 1.6118 3.962 0.4001 0.932 1.429 (0.962 0.935 0.715
3 1.5936 5.143 3.4195 0.979 1.584 0.954 1.140 0.639
4 1.5857 4019 04313 1.007 1.661 0.955 1.226 0.61}1
5 1.5816 6.717 0.4392 1.025 1.708 0.957 1.275 .594
10 1.5747 8.971 0.4584 1.068 1.811 0.968 1.368 0.559
Hulthén potential
] ] 3 0.3743 0.865 0.983 1.000 (.134 0.778
pi 1 11/2 0.3974 0.925 1.453 0.904 1.007 0.653
3 1 7 04161 0.971 1.590) 0.910 1.175 0.608
4 1 97/12 0.4281 0.999 1.662 0.920 1.249 0.586
3 1 134/15 0.4365 1.019 1.707 0.928 1.292 0.573
10 ] 3659/315 04572 1.065 1811 0.952 1.377 0.546
15 I 1.321(1) .4661 1.084 1.852 0.962 1.40)7 (1.537
20 I 1.434(1) 04712 1.095 1.876 0971 i 423 (.535

MNote: Here and in Tables 4 and 5. the exponents of the values are presented tn parentheses (for example. 1.0O48(2) = 104 8. e1c.}.
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Table 4. Parameters for potentials with barriers

N -3 X, Xe C b € b D
1/2 26184 0.8545 0.3386 1.255 0.892 0.6%21 0.594 1.

1 2.7782 —~0.4383 (0. 1487 -1.421(1) 4.545 1.048(2) | -2.327(1) | 0.3373

2 27758 ~0.2960 0.1580 ~1.684(1) 5.337 1.605(2) —3.894(1) 0.328%

3 2.7758 02954 | 0.1581 | -1.685(1) | 5340 1.605(2) | —3.899(1) | 0.3285

oo 2,7738 —.2954 0.1581 ~1.685 5.340 1.605(2) | —3.899(1) | 0.3285

Note: The case N = e comesponds ta the ECSCP {15}, and finite N values correspond to the potentials (15). Here and in Table 5. the barner

penetrability 1 is calculated according to (16).

value Jaccording to (3a), it is equal to umity] more
slowly. On the other hand, the ratio 7¢/r; and the coet-
ficients ¢q, by, --- [which determine the Coulomb cor-
rections in {3} and (7)] vary only slightly with increas-
ing n.

5. POTENTIALS WITH A BARRIER

We have thus far assumed that the potential in {2}
satisfies the condition v(x) 2 0 everywhere in the inter-
val 0 < x < . This corresponds to attractive potentials.
However, potentials with a barrier are also often
encountered in physics. For example, the potential

Vin) = __§3P"rcns iLr, (15)

is considered in solid-state and plasma physics (see, for
example, [25 - 29] and references therein). In the liter-
ature, this potential is referred to as the exponential
cosine screened Coulomb potential (ECSCP). Numeri-
cal calculations for this potential yield the parameter
values presented in Table 4, the effective range r, being
negative. According to [ 30], this is always the case, pro-
vided that the penetrability of the barrier in V (r) is low.
In the ECSCP, the barriers occur in the regions m/2 <
r=pr < 3n/2, 25T <x < 3.57W, ... 1n general, the nth
harrier occurs in the region a, < x < b,, where a, =
2n{n — 3/4) and b, = 21t{n — 1/4).

The barrier penetrability for particles with zero
energy 18 given byﬁ]

D = exp {—gmj [ v_(x)] md.r](,
_ p _

where v (x) = 0 for v(x) 2 0 and v.(x) = ~w(x) for
v(x) < 0. In the case undet study, we have

(16)

bl
-1 - -1f2 -nn .
¢ e"“{fn{czn é *fn=IJ-—v’{I)d.x,
o

5 Here. we do nol take into account the reflection of particles
hetween the neighboring barriers: of course, this can affect the

preexponential factor.

PHYSICS OF ATOMIC NUCLEL Vol 39 No. |

1996

where ¢, and ¢, are constants that are independent of n.
For this reason, the penetrability D is fimite, desptte the
fact that there are an infinite number of barriers in the
ECSCP.

it should be noted that the coefficients b, and c, for
the ECSCP are 1 to 2 orders of magnitude greater than
those for the monotonic potentials from Table 1. This Is
indicative of the abrupt enhancement of Coulomb cor-
rections to the effective range.

To verify this result, we performed calculations for
the ECSCP truncated at the N'th barrter; that 1s, we set

vifx) = e"ifia(bw—x). by = 27N — 1/4). (17)

The results of these calculations are presented in Table 4.
It can be seen that even at N = 1 (only one barrier), the
effective range becomes negative, while the coeffi-

cients &, and ¢, of the Coulomb comections abruptly

increase. Beginning at N = 2, all the quantities assume
values that are rather close to those corresponding to
N = oo [potential {15)]. On the other hand, we have
vix) = 0 at N = 1/2, and the quantities r,, r¢, etc., do not
exhibit qualitative features that distinguish them from
the analogous quantities for other attractive potentials
{cf. Table 1).

Table 5

a Ee r, ¢ b D
10 | 1.8625 |.B77 —(.093 (.849 0.996

8 1.9131 1.804 -0.023 0.830 (10986
6.5 1.9741 1.714 0.108 (1796 0.965

5 | 20780 | 1.552 0.511 (.692 0.908

4 | 2.1995 | 1.348 1.532 0.438 0.821

3 24238 | 0926 774 —1.282 0.645

2 | 29548 | -0.392 2.398(2) | —-4.91(1) |0.340
1.5| 3.5770 | —-2.847 1.993{1)| —2.55 0.151
1.2 | 4.2493 | -7.622 1.249(1)| —0.883 5.98(-2)
1 49362 | —1.737(1)| L.165(1)]—0.354 2.20(-2)
0.7 6.6880 1 -1.130(2)| 1.60(1) [~4.74(-2)|1.38(-3)
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Thus, the presence of a barnier may lead to a consid-
crable increase in the Coulomb comrections to the effec-
tive range. This conclusion was verified not only for the
ECSCP, but also for the model potential

« 1 1

vix) = ¢ {2 --), a>0. (18)
By varying the parameter a, we can ¢asily change the
barrier penetrability D) (see Appendix B). This example
confirms that Coulomb comections increase abruptly
when the barrier penetrability becomes small. In the
case under study, this occurs for D < 0.3 (see Table 5).
It would be interesting to study the physical implica-
tions of this result in problems involving the potential
(15).

6. CONCLUSION

We calculated Coulomb corrections in low-energy
scattering [that 1s, the coefficients ¢y, ¢, elc., in equa-
tions (5} and (7)} for various model potentials V (7).

The main conclusion that can be drawn from these
calculations is that the most important corrections (c,,

¢, and ¢|) are weakly dependent on the form of the

strong-1nteraction potentials and that they are deter-
mined primarily by the ratio p = r./r, that corresponds
to the emergence of the s level in the system. This cir-
cumstance (which could not be antictpated) is useful in
applications, because it enables us to choose a model
potential that is most close to some realistic nucleon—
nucleon potential (Hamada-Johnston, Reid, Paris
potentials, etc.). These potentials are complicated and
involve a large number of parameters, which naturally
hampers numencal calculation of Coulomb correc-
tions, especially qualitative analysis of the dependence
of these corrections on the form of potential, on its
small-distance bebavior, etc. Moreover, nucleon—
nucleon and nucleon—nucleus interaction potentials are
not known at present. For this reason, we believe that in
the calculation of Coulomb corrections, complicated
reabistic potentials do not possess substantial advantage
over an appropriately chosen model potential.

We considered only real-valued potentials V. (r). At
the same time, absorption is known to be always
present in Cownlomb systems involving additionally
short-range forces (for example, in hadronic atoms).
Nonetheless, the conditions

Bu = [m(aﬂ"’(ﬂ;'.t) % ] ' Im r_? <% |Re‘r.li‘ (19)

hold in a number of cases in the resonant region; that is,
absorption is weak (1n particular, analysis performed in
[12, 31] showed that in the dr system, B, =~ 0.018 and
r.o=3.0-10.3 tm). Moreover, in contrast to Re(1/a_),
the imaginary part Im(1/a_,) is virtually constant in the
vicinity of a resonance. Therefore, Coulomb correc-
tions associated with the real part of potential are most
important, because they can qualitatively change the
situation. For example, it follows from (5) that at a, =oo

{(exact resonance), the scattering length 4. is com-
pietely determned by Coulomb corrections.

The following comment on potentials with barners
is in order. The fact that at low barrier penetrability, the
effective range r, is negative, with an absolute value sat-
isfying the condition |r,| 2 r,, is well known [30].
It was shown above that in this case, Coulomb coirec-
tions to the effective range r, also abruptly increase (by
several orders of magnitude). It would be interesting to
study the implications of this behavior for the problems
of solid-state physics, where the potential (15) is often
used.

Of problems that were not discussed in this study,
two are worthy of special note. The first is the study of
the effect exerted by the repuisive core in V () or Cou-
lomb corrections. The second is the extension of the
results obtained here to the case of nonzero { — prima-
nly to p states (here, Coulomb corrections 1o the effec-
tive range are of particular interest {11, 19]). We are
going to address these issues in the future.
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APPENDIX A

Here, we present the formulas that describe the Cou-
lomb corrections to a, and r, and which were used to
calculate the quantities presented in Tables 1 and 2.

By %, and y,. we denote the wave functions corre-

sponding to the emergence of the s level in the system
with and without allowance for Coulomb interaction,
respectively. The comresponding coupling constants are
£, and g_. We have

gfj_g.i = i

'Y B = [oxindx, A
{

where a, 1s given by equation (1) at a., = =. The func-
tion ¥, (x) satisfies the equations

dziu FN —~
—Z |8 vix} -0 o | Koy = 0, x = r/ry, (A2)
- - _rN
xﬂ{(}) — 0: IDEE.'[I{I} = ! +2ﬁ{TI
# (A.3)
gy
b4 [In ~— X+ 2C+ln2-l} + ..., X—= oo,
dg
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The function S,(x) hias the form

-

zK(z), o©=+1
=0
Eolx) = ! © (A.4)
—gle{z), ag=-1,

where z = (8ryx/ag)'” and K, and N, are a Macdonald
and a Neumann function. The tquatir:m:f. for yu(x) are
obrained from (A.2) and (A.3) in the limit 6 —- 0.

There are corrections of two types to the wave func-
tion ¥, Corrections of the first type stem from Cou-
lomb wteraction (small parameter ry/dag), while correc-
tions of the second type are due to the deviation of the
s-level energy from zero (parameter ry/a,). In accor-
dance with this, we can write

] 2 ]
Tl¥) = To0) + —2 )+ B 2y, (x), (A
HH as

where we discarded terms of orders (ry/ag)® and

ri,j aga,, as well as higher-order comrections. The func-
tions ¢, and ¥, satisfy the nonhomogeneous equations

S+ p vy, =%, /X,
(p] gmv( )(pl 11 {A‘ﬁ.)

XT T By V(I)Il = V(I)Ig:

and are regular at the origin [¢,(0) = x,(0)=0]. Atinfin-
ity, these functions behave as

9,(x) = Px +a(1),
X (x) = x[In{x/x}— 1] +all),

where x. = rc/ry [see equation (6) and Fig. 3]. The
absence of constant terms from (A.7) is a nontrivaal ¢ir-
cumstance; it is the condition that unambiguously
determines the functions @, and ¥,. Figure 3 shows
these functions calculated numencally for the Yukawa
and Hulthén potentials. It can be seen that for x 2 3,
they approach the asymptotic expressions in {A.7) and
that for smaller x, they have one zero each [with the
exception of the function x,(x) for the Hulthén poten-
tial; this function behaves as ¥,(x) e x2 for x < 1 and is
positive for all x]. It can be shown [12] that for the
gsround state, the functions ¥, and ¢, can have no more
than one zero in the interval 0 < x < we,

Considering that the exact formula for the effec-

tive range corresponding to the emergence of the s
level 15 [3, 31]

(A.7)

oo = 2ry B30 — X001 (A8)
0

and using (A.3) and {A.5), we arrive at expansion (7).
The Coulomb corrections to the scattering length and to
the effective range are expressed in terms of the func-
tons %,, X, and ¢,. The exphcit expressions for these
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Fig.- 3. Functions y; {solid curves) and ¢, (dashed curves)
for the Yukawa {Y) and Hulthén (H} potentials (see nos. |
and 4 in Table |}.

corrections are given in [10, 11]. Here, we represent
these expressions in the more compact form

(b}t = 2 [{1,25) Eodr, (A.9)
.‘;D

L

2 g
c, = x—jn{x)dx, c, = Ejn(x)xdx, (A.10)
‘o s g

where

XoX .
Ex) = l——Ef, T{x) = l—anEi "‘-"]Iu‘Pr
¢ (A.11}

For short-range potentials, the functions defined in
(A.11) exponentially decrease for r 2 ry,.

Let us make some comments on our numerical pro-
cedure. For the majority of potentials under study, we
have

vix) = L 4 v+ v+, x— 0 (A12)

(£ =1 or 0). To circumvent difficulties associated with
the singularity at x = ), we began the integration of
equations (3) and (A.6) from certain small x;. For 0 <
X < x5, we have

LolX) = ax + agxz + H?_Ij + 0(14}. (A.13)
From equation (3), it immediately follows that
{ i
a; = "ES.‘C‘H- a4y = —&; (Cazt vouy}, ... (A.14)

Similar relations are obtained for ¥, and ¢,. For suff1-
ciently large x, we can set v{x)=0. Hence, as in the case
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of finite potentials, we assume that, for x > x_, the
required functions are given by

Xty =1, x,x)=Px. o x)=x[In(x/x;}—1].

In the interval xp < x < x.., the equation was solved
numerically by means of the standard routine. In calcu-
lating x,, x, etc., the contnibution from the region x <
1, was taken into account explicitly. This can easily be
done with the aid of expansion (A. 13). For example, we
» have

X

I l 1
5% = j (1~ x;) dx +x, - ia?x;— Ea,azx;
(A.135)

"TIF

! (ag +2a,a,) xg.

5

Let us also descnibe the procedure that we used to
calculate the functions x,(x) and ¢,(x). Specifying

arbitrary initial values i]{xﬂ) and i] {xp), we sought a

particular solution ;-(1(,::) of the nonhomogeneous

equation (A.6). The required solutionis %, = %, — ¢\ %o
where

¢, = x,(x.)— Px.. (A.16)
In a similar way, we obtain
(x) = @, — 3%
(pl P, Ex{} {A_l?)

¢, =@, (x.)— In{x/x) - 1],

where ¥, (&n ) is a particular solution. Here, we consid-

ered that the function y,(x} is a solution of the corre-
sponding homogenecus equation.

In calculating the integrals for &, ¢, and other coef-
ficients [see (A.9) - (A.11)}], we took into account the
contribution from the region x < x, by means of the
same method as that used to obtain (A.}5). The points
xq and x_ were varied, and values that were stabilized as
the result of this procedure were considered reliable.
The accuracy achieved for all the quantities included in
Tables § and 2 was oot poorer than 107>,

For the sake of comparison with the results of previ-
ous calculations [ 1], we note that

b, = ko/Bx.. ¢, = h,, (A.1IB)

where k; and A, are coefficients introduced in [11].

APPENDIX B

The potential (I 8) has a Coulomb singularity at the
ortgin, corresponds to attraction in the region 0 < x < a,
and possesses a barmier for x > a [x, = 1/2{a +

FHYSICS OF ATOMIC NUCLE]

Ja- +a)l. Up to a preexponential factor, the barrier
penetrability for particles with zero energy is given by

D = exp {~g'" l(a)}, (B.1)
where
ia) = zjﬁx— vix)dx
) (B.2)

=2Un/a)" e W, \a(a/2),

and W is a Whittaker function.”’ In the limiting cases,
we obtain

X, =2(Ja+a+.),

; (B.3)
I=2a +12mna+0(1), a— 0,
X —a+1— 1 +
=AY 378 B4
N N
a 3Jaq

-2
v, = vix,)=a exp(—a), a—= e

Thus, the barrier has an exponentially small pene-

trabihty for small a [D e exp(-2 .@f’ a)] and virtnally
disappears for a & | (0 — 1). With decreasing barrier
penetrability, the effective range also decreases: it van-
ishes at @ = a, = 2.2 and is negative for ¢ < g, in agree-
ment with the results presented in {30]. The coefficients

¢, and b, are anomalously large at a = a, (here, b,

changes sign). Analysis of this example enabled us to
qualitatively clarify the dependence of Coulomb cor-
rections on the barrier penetrability.
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