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Abstract—Coulomb corrections to the low-energy scattering parameters (scattering lengths and effective
ranges) of states with nonzero orbital angular momentum are studied. The greatest attention 1s paid to the case

of the p wave. Resonance scattering is considered for a s

ystem with a shallow nuclear bound or quasistationary

{resonance) p level. Coulomb corrections are calculated numerically, and their dependence on the shape of the
strong-interaction potential—in particular, on its short-distance behavior—is studied in detail.

1. INTRODUCTION

This article reports a continuation of the study
begun in [1]. Here, we investigate Coulomb corrections
for states with / # 0, paying special attention to the case
of the p wave. The formulation of the problem is given
in [1], where the reader can also find an extensive list of
references on the subject. In view of this, we skip intro-
ductory remarks and begin by describing the organiza-
tion of the paper.

In Sectton 2, we present the formulas for Coulomb

corrections to the parameters of low-energy scattering

(scattering length afﬂ and effective range r}:” ass0Ci-

ated with strong interaction) in states with arbitrary
orbital angular momentum [, As before, we consider the
case of resonance scattering (without absorption) for a
system having a shallow (on the nuclear scale) bound
I-wave level, so that the above corrections may be very
important. The cases of { = 0 and I = 1 are different.
Indeed, for the !th partial wave, the large Coulomb log-
arithm

A = In(1/8), &~ry/ay <1, (1)

appears only in the Coulomb-renormalized coefficient

of k¥ in the effective-range expansion (see [2, 3]). For
this reason, the quantity that undergoes the strongest
renormalization in the s wave is the scattering length
[4], the term proportional to A appears in the renormal-

1zed effective range rfﬂ for the p wave ({ = 1), etc. Cou-

lomb corrections to the remaining terms of the effec-
tive-range expansion involve additional powers of the
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small parameter O (we assume that | 8| <€ 1; this is so at
least for extremely light hadronic systems). Thus, the
cases of /=0 (see [1]) and /= 1, which are of paramount
importance for applications, must be considered sepa-
rately.

In Section 3, we calculate numerically the coeffi-
cients f) and A, [see formulas (12} below] for various

model potentials of strong interaction. These coeffi-
cients determine the Coulomb corrections to the quan-

tities a;:” and ri“ . We also consider the dependence of

the Coulomb corrections on the form of strong-interac-
tion potential—in particular, on its small-distances
behavior. Some formulas and details of calculations are
given in the Appendices.

In what follows, we use the system of units in which
i =m=e¢e =1, where m is the reduced mass, and the
conventions adopted in [1].

2. COULOMB CORRECTIONS
FOR LOW-ENERGY SCATTERING

For states with { # 0, the Coulomb renormalization
of the inverse scattering length is given by [5]

i | 43
e N | (2)
a’’” a,"r ] ag '
where ¢, = 2{(2{ - D)%, 6 = sgn(Z, Z,) = *+1, ay is the
Bohr radius, and

o0

2, dr
J, = —. 3
= Juns 3)
0
Here, xAr) 1s the wave function in the strong-interaction

potenttal V(r) corresponding to the emergence of an I-
wave level. This function satisfies the Schrédinger
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equatior with energy £ = 0 and the boundary condi-
tions

‘ Limry(r) = 1. (@)

F =% oo

;
xlr)e<r ", r—0;

For nonzero / values, the function % (r) decreases at
infinity (owing to the centrifugal barrier) and is normai-
izable: that 1s, we have

Ny = [xi(r)dr <o, (5)
0
The effective range is negative; it is given by [6]
= N, 121, (6)

1-2f1

and can be estimated as ‘rfﬂ ~ ry , where ry is the

range of nuclear forces. It is convenient to express the
right-hand side of equation (2) in terms of the effective
range by using the relation

1 1 G| (221
= df_‘-"t j

{sd_ (s -
a;} EII} dg

: (7)

where

-I/(28-1

_2H/(2 - 1)
df = Cf

(N J, (8)

15 the dimensionless coefficient depending on the form
of the potential V() and on the number of the /-wave
level. Recall that

G, = %Rj, Fo=-36RT (I=1) (9)
for a hard sphere of radius R (nonresonance case)>’ and
a, = o, 7 =_3R" (10)

for a square well of the same radius (g = g,;; see Appen-
dix 1).

For an arbitrary short-range potential V (r), it is con-
venient to perform normalization by using (10) because
we assume that the condition |g,| ri, is satisfied

(quasiresonance case). Introducing the parameter R,
{having dimensions of length) via the relation

R, = -3/r", &= R,/a,, (11)

we can represent the Coulomb corrections for the case
of the p wave as

11:3]_ 3':_-‘5-] = gfla-l- = f} — Bd] —_ I.SJI/N‘]?,
(4 1
B (12)
re - = —45[1n(1/5)+h1]+__,,
B

1n what foliows, tilde-labeled quantities correspond to the case of
a hard sphere.
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Table 1. Ratios R,/r, for potentials of the form (15)

v(x) 1=1 | 1=2 | 1=3 | I=5 [ I=w
e 7! 1.030 | 1.034 | 1.033 | 1.027 | 0.979
(e — 1) 1.041 | 1.053 | 1.056 | 1.057 | 1.020
1/sinhx 1.037 | 1.048 | 1.051 | 1.051 | 1.016
exp(—x2! | 1.050 | 1.070 | 1.080 | 1.088 | 1.072
e 1+x) | 1.013 | 1.016 | 1.016 | 1.013 | 1.062
1 +x | 1.012 | 1.013 | 1.010 | 1.004 | 0.958
(e + 1) 1.012 | 1.014 | 1.013 | 1.009 | 0.968
xf(eF=1) | 1017 | 1.022 | 1.023 | 1.021 | 0.986
(coshx)"2 | 1.0077| 1.0080| 1.0062| 1.0016| 0.960
exp(—x) 1.015 | 1.018 | 1.018 | 1.0i4 | 0.973
exp(—x?) 1.015 : 1.022 | 1.025 | 1.027 | 1.004
exp(~x*) 1.007 | 1.011 | 1.013 { 1.016 | 1.002
B(1 — x) 1 I 1 1 1

Note: The values of &, (13} correspond to the emergence of the first
(nodelessy I-wave level, r; s the effective range for the

ground state wath {(f = 0) {sec Table 1 from [1]).

where the ellipses stand for terms involving additional
smallness in & ~ ry/ag. The explicit expression for the
coefficient #; was obtained in [2] and is presented in
Appendix 2 (in a more convenient form), As was men-
tioned above, the Coulomb logarithm (1) appears in the
correction {o the effective range (not in correction to the
scattering length, as in the case of I =0).

Thus, the Coulomb-renormalized inverse scattering
length and effective range at / = 1 are expressed in terms

of the radius R, (or r{” ) and dimenstonless coefficients
/1 and A,. A method for calculating these coefficients is
described in Appendix 2.

The above parameter R, can be generalized to the
case of arbitrary { as

-
réﬂE."J, I — 0

— 1
Ry =5 (25‘# 1]{1";; (s3] J21-1 TS
[2(2:—1) & }  TE D

(13)

-

where c; is the same numerical coethicient as in (2). For
a square-well potential, the parameter R, coincides with
the well radius (that is, with r.) at all { and » values (see
Appendix 1). It can be seen from Table 1 that, for other
short-range potentials, R; for [ £ 3 differs from the
effective range r, for the ground state only by several
percent. At the same tume, the effective ranges essen-
tially depend on the form of the strong-interaction
potential and increase factorially with increasing [ (see
Appendix 1).

Table 1 also presents the result obtained in the limit
{ = =0, which can eastly be treated within the technique
of 1/n expansion. Using the asymptotic expressions for
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the normalization integral N, {see formula (4.3) from
[7]}, we obtain

e dx xlv(x)
RI/I'N‘:IGEKP{I‘;{I - \XI —xgv(xu)jl}, (133}

I

I—-‘ﬂﬂ,

where x; is the position of the turning point for E =0
and / — oo, which is determined from the equation
xv'(x) + 2v(x) = 0 with the potential used in the form (15).

Table 1 demonstrates that, for short-range poten-
tials, the quantities K; and r, are close to each other for
all { 2 1. This indicates that the parameter R, introduced
1n (13), which has dimensions of length for any / value
and which determines the effective size of the system,
has been chosen reasonably. Note also that R, approaches
the limiting value R, rather slowly. This can be seen
from ‘Table 1 and the model example employing the &
potential that admits construction of analytic solutions.
In the latter case, equation (A.10) yields

R O
21 f

Thus, the expansion parameter & (11) is very close
to the parameter © = r,/ag used in [1] for the case of
s states. The analogs of formulas (12) for an arbitrary
orbital angular momentum / > 1 are given by

LJ_ (l”} = Sf,3+._., 0 = R,/ay,
a”’ a 4 (14)
r /e = 1=+ 08Y), 11,
where
_ . 1 sy 21+ 1A= 1)
a; = {IJRIH I = o, 1",{]l (14a)

Is the scattering length for interaction with a hard
sphere of radius R, and

1

fi = [f+—21-)m[(21~ 1)N,]

=221 -1)

J)
(14b)

1

[ S —

= [i+1nr-3y7 " 2r-1y e,

The coefficients ¢, are defined in (A.7); &¢; =9, o, =

2097, 0; = 1997, o, = 2193, and o, for I » 1 is
approximately equal to 0.2711. The dimensions of the
quantities introduced above are

[J) =17 [N]=1L1""%

la] = L7, [nl=L"" [R]=1L
where L has dimensions of length. In particular, we
have [aq) = [ry] = L for the s wave and [a,] = L? and
[r1] = L-! for the p wave.

!

[x:] = L,
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Formulas (12)—(14) express the Coulomb correc-
tions to the parameters of low-energy scattering in
terms of the effective range of the system for the inter-
action strength corresponding to the emergence of the
I-wave state. In principle, this effective range can be
measured in experiments. In addition, these formulas
contam the dimensionless coefficients f; and h,, which
depend on the form of the strong-interaction potential
and which are determined numerically (see Appendix 2).
We now describe the results of our calculations.

3. NUMERICAL CALCULATIONS

A short-range strong-interaction potential can be
chosen as
(15)

Vi(r) = —8-v(x), x=r/r,,

Fy

where the function v(x) determines its form, and g is
the dimensionless coupling constant. The results of our

calculations are presented in Table 2, where x| = —r; ry

1s given by (A.26). All the quantities in Table 2 for all
potentials, with the exception of the Yukawa potential
(no. 1), correspond to the emergence of the first [ = 1
bound state (g = g,) in the potential (15).

Table 2 lists the results for potentials having a Cou-
lomb singularity at the origin (nos. 1-9), including the
Yukawa and Hulthén (no. 5) potentials, and for various
potentials that are finite at the origin. The following
conclusions can be drawn from analysis of these data.

(1) First, we emphasize that the coefficient fi 18
almost constant, lying between 0.9 and 1.0 for the
majority of the potentials considered here; it varies only
slightly even when we consider excited states, Thus, the

Coulomb corrections to the scattering length o’ are

weakly dependent on the specific form of the strong-
Interaction potential and seem to be model-independent
quantities,

(2) On the other hand, the coefficient k, changes

strongly and mregularly when we go over from one
form of potential to another. To determine the Coulomb

correction to the effective range r:ﬂ , we therefore need
detailed information about the potential V,(r).9

Previously, the coefficient i, was calculated only for
a 0-function and a square-well potential. In these cases,
which can be treated analytically, the resulting 4, val-
ues are close to each other. On this basis, it was
assumed in [3] that the coefficient #, takes close values
for more realistic potentials as well. Data from Table 2
demonstrate that this is not the case.

It should be noted that the coefficient 4, is added in (12) to the

large Coulomb logarithmn. As a result, the Coulomb correction to
the effective range proves to be less sensitive to the form of the
potential V (7).

Vol. 39 No. 11 1906
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No. vi{x) £ X xf fi hy R /r
1 ey ] 9.08196 1.374 0.209 1.024 1.497 1.030
17.7446 0.952 0.670 0.981 0.700 0.795

29.4614 0.781 0.989 0.947 0.509 0.747

442613 0.683 1.226 0.923 0.429 0.729

62.1602 0.619 1.413 0.906 0.385 0.721

2 exp{—x)x! R.79424 2.670 0.264 0.920 0.600 1.050
3 exp(—xHx! 7.82073 3.251 0.265 0.872 0.400 1.051
4 x718(1 - x) 6.59365 3.273 0.287 0.840 0.313 1.051
5 (&5~ 1) 5.30594 0.960 0.449 0.988 1.092 1.041
6 1/sinhx 3.28939 0.868 0.615 0.955 0.878 1.037
7 (e> — )] 13.9487 2.201 0.153 1.013 1.338 1.035
8 (&% — ¢ N)x] 5.65691 1.234 0.315 0.990 1.195 1.029
9 (x! -1)8{1 —x) 15.3962 4,482 0.186 0.891 0.431 1.069
10 exp(—x) 7.04906 0.835 0.701 0.935 0.787 1.015
11 exp(—x2) 12.0993 2.060 0.408 0.870 0.426 1.015
12 exp(—x*) 12.2985 2.787 0.333 0.837 0.326 1.007
13 8(1 -x) 9.86960 3.000 0.325 0.813 0.276 1.000
14 e+ 1)1 8.21353 0.784 0.816 0.919 0.699 1.012
15 1/coshx 3.68891 0.815 0.752 0.925 0.741 1.008
16 1/cosh?x 9.35909 ~ 1.489 0.457 0.907 0.636 1.008
17 x/sinhx 1.53231 0.611 1.165 0.901 0.591 1.011
18 (1-x28(1 —x) 21.6796 3.599 0.263 0.831 0.306 1.012
19 20% g 3.87529 0.801 0.778 0.923 0.724 1.011
20 xf(ef— 1) 2.80068 0.635 1.069 0.913 0.638 1.017

Note: For the Yukawa potential, the parameters are presented for the five p-wave levels, For other potentials, they are given for the first! = 1

level. All the quantites correspond to the emergence of the p level, and the potentiais are represented in the form (15).

(3) Assuming that there is a power-law singulanty
for r — {), we now Investigate the dependence of the
Coulomb corrections on the short-distances behavior of
the potential V(r). For this purpose, we consider the
functions

v(x) = x ‘exp(-x), 0<a<2 (16)

vix) = x%6(1 - x), (17)

which correspond to a smooth and a sharp cutoff of the
strong-interaction potential at large distances. With

increasing ¢, the x| value, which determines the effec-

tive range, decreases. This is because the wave function
tends to concentrate near the origin (it is well known [8]
that collapse into the origin occurs at o = 2). At the
same time, the coefficient f; is almost constant, while
the coefficient k; strongly increases with increasing o
(compare the results for potentials nos. 1-4 and 10-13

in Table 2). This is in accord with the above conclu-
stons.,
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(4) Companson of the results for potentials nos. 1-4
and 10-13 from Table 2 indicates that the quantities

rg‘”

= x[f}/’ ry increase, while the coefficient #,
decreases as the decrease of the potential V (r) at infin-
ity becomes faster.

(5) For I 2 2, the coefficients f; appearing in (14)
were also calculated and found to depend only slightly
on the form of the potential V (r). On the whole, they
reveal a tendency to decrease with increasing /.

4. CONCLUSION

We have calculated Coulomb corrections to the
characteristics of low energy scattering for various
short-range potentials V(). The results obtained in [1]
for I = 0 and here for / = 1 make 1t possible to find out
which of these corrections are virtually independent of
the choice of model and which essentially depend on
the formm of the strong-interaction potential. These
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results can be used in the theory of extremely light had-
ronic systems.

We emphasize that we always considered resonance
scattering for a system with a shallow nuclear level. In
the case of Coulomb attraction, this leads to rearrange-
ment of the atomic spectrum (Zeldovich's effect).5 )
Such a situation does not occur frequently, because the
relative width of the region where the spectrum is rear-
ranged is determined by the small parameter (ry/ag)¥ +!
and decreases fast with increasing /. On the other hand,
many resonance systems with Coulomb repulsion (pp,
dt, d*He, aq, eic.) are of great physical interest. Cou-
lomb corrections for these systems are significant. It
was shown above that, under the condition az ® r,,
there are convenient formulas for calculating these cor-
rections for any strong-interaction potential.
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APPENDIX |

Let us consider several model potentials for which

# can be calculated analytically.

(1) The hard-sphere model is extensively used in
kinetic theory of gases, molecular physics, plasma
physics, ete. [12, 13]. The wave functions have the form
XAr) = cosdJ (kr) — sind,N, (kr} for r > R and satisfy
the boundary condition ¥(r) = 0. The effective-range
function is given by [14, 15]

~ (5

KO = B cots (k) = -;lrl;(m), (A.1)
!

where g, is scattering length [see equation (A.6) below],

M2) = AL(R)/A(Z), v=1+1/2, (A2

and A,(z) is related to a Bessel function by the equation

-V

Ava) = Tev+ (E) 1

(A.3)
=0F(v+1-—lzz)
=,F =72 )
For the s and p waves, we have
I 2 1 a4 2 &
Ao(z) = zcotz = 1—§E "-4—53 —%Z — e s
5 (A.4)
A(z) = 133[ +z +z] = 142212 4,
‘ 3" \tanz-z )~ 75T TIist T

> For the first time, Zeldovich [9], whoe used an example from
sold-state physics, considered this effect for s-wave states.
A generalization to the case of I > 1 was given in [10]. Passibly,

the atomic spectrum with { = 1 undergoes rearrangement in a K o
system [11].
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For arbitrary ! and z — 0, we arrive at

21+ 1
2{+3

AM(z) = 1+

(A3)
[+ 3 4

2
rd
x{zz-l Toivseii -t }

From the above relations, it follows that, for a hard
sphere of radius R and arbitrary I, the scattering length
and effective range for the nonresonance case are given
by

a=wR ", r=-BR ",
(2143 ﬁﬁ, (A-6)
P [43+2J ’
where
o, = [(21+ 1y2i- 17"
(A7)

s = 2021+ 1)
T R+ 32— Da,

In particular, we have o = 1, ﬁn =-2/3; o, = 1/3, E}I —
18/5; etc.

(2} For a square-well potential, the function appear-
ing in (15) has the form v(x) = 8(1 —x), ry=R. The scat-
tering length is

(0 _ A(K) -
o= [l —Av_l(ic)]ﬂ‘ AS)
1‘:2 ﬁv+1(m)»— |

TRI+ DRI+ DA, ()

where g=x?andv=1[+ 1/2.

The coupling constant ¢ = g,, corresponding to
emergence of the nf level is determined from the equa-
tion A, _ (g% = 0. We also have N, = (2/ + 1)/2(2/ - 1)

and J, = (2 + 1)/2l. For the effective range r,” at g =

gn» we obtain formula (A.6) in which the coefficient E'I
15 replaced with

2{+3 =
Br = 2(22+1)B
R,=r =R

= (21 + 1)1N(21 -3,
r = 21+ 1)IY ) (A9)

(By=-1). Thus, rf Y and R ; are independent of the level

number in this case,? the quantity R, being coincident
with the well radius R for alt » and |.

% Of course, this is a special feature of the model betng considered.
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(3) For the &-function potential w(x) = &(1 — x), a
simple calculation yields g, = 20+ 1, N, = 2021 + 1)/(2{ +
DR -10,J,=2I+ 1)/2({ + 1), and

|
2 (204 3\
Br= b Rf‘( 1 ) R

(recall that, in this case, only one bound state appearing
at g = g; can exist in each partial wave).

{4) Let us finally consider the potential (17), which
reduces to a square-well potential at o = ¢ and to a cui-
off Coulomb potential at & = 1 (no. 4 in Table 2). The
wave function corresponding to zero energy has the

form

(A.10)

xdx) = )

where

x =2¢"2/(2-), p=(2+1)/(2-0a). (A1)

G 1-

has poles at the points k,; = E_,,E“ P where ﬁf,ﬂ 1s the
nth positive zero of the Bessel function J,(§) corre-
sponding to the coupling-constant vatue g = g,, at

which the nf bound state appears. These coupling-con-
stant values are given by

2
Eni = [(1_%)631_”:' , n=1 2:

Forg=g,and! 2z 1, the wave functicon is normalizable;
that ts, we have

The scattering length

(5) !.1+1(1{}

o _ Ay(x)
I I‘Iu 1(1‘:)

Ap—l(l'c)

] (A.12)

(A.13)

| ) 2 ~Zx T+
_ 2 Z g -
M= s taal X 0| [T ey,
| (A.14)

1 —2x
1 2 2-a 2 -
it e | [Ny,
D

j’=21 2«

where X = K, and J, _1(x) = 0. These integrals are cai-
culated analytlcall}r at oo =0 and ¢ = 1 {seec formulas
(1.8.3.12) and (1.8.3.4) in [16]}. In the latter case, we
obtain it =2/+ 1 and

2(4!
E-'(ﬂ}
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wherc }; is the coefficient given by (A.9). For s states,
we have

-2
J"IEFEJ = %{1 -E[E_‘r{;m] }R, (Alﬁ)

where £1” = 2405, £\ =5520,and £ = (n - }J -+

8rn) ' +...,n 5 1 (see [17]). For n —= o=, r_tends to
4R/3—that 1s, to the effective-range value for the
o-function potential (however, this 1s not true for / 2 0).
For other o values, the integrals in (A.14) can easily be
calculated numerically. The above analytic formulas at
¢ =0 and & = 1 were used as a check on the numerical

calculations.

With increasing orbital angular momentum {, the
effective ranges increase very fast in magnitude. For the
square-well potential, formula (A.9) yields

B,=3, B,=15 [B;=315, = 14175,
Bs= 1091475, B = 127702575, B,=2.107(10),
Bio=4.738(17), PB,s=4.096(31),....
For ¢t = 1 and n = 1, the coefficients 3, take the values of
3.273, 18252, 4.102(2), 1.935(4), 1.534(06), ...

fori=1,2,3, 4,5, respectively. In parentheses, we indi-
cate exponents of the numbers—that is, a(b) = a x 10°.
For the d-function potential, we have

B, =12/5, B,=60/7, B;=140, B,=5.155(3),
Bs =3.358(5), PByo=8.240(16), P =4.965(30),...

In the Iimit / ——= o, we arTive at

7| = const(20)1(1/R") I (A.17)

where ¢ = —1/2 for the hard-sphere and square-well
potenttals, and ¢ = —3/2 for the d-function potential.
Thus, we have obtained the factorial asymptetic behav-
1or. By using the of 1/n expansion [7], we can show that
this 1s true for an arbitrary short-range potential.

APPENDIX 2

Let us briefly discuss the formulas for calculating Cou-
lomb corrections. We consider the case of arbitrary / value,
because there is no substantial simplification at / = 1.

In the asymptotic region, the wave function in the
potential (15) for a zero-energy state has the form

(Pr(?'k —0)-'?‘ ——=r , F—= o9 (A.18)

5)
a
where o is the numerical coefficient given by (A.7).
2

The term L (r“’) in the Schrodinger equation must be
dr’
much greater than v(r)r*!. This constrains the rate at

which the potential can decrease [8]: if v{r) ~ rP for
r ——-= oo, we have f > 27 + 3.
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(
At the exact resonance (g = g; and a;” = oo), the

function y,(r) = @r, 0)) satisfies the equation

x;*+[g;v(r)—”””} (=0  (A19)
r
and the conditions
_ A —(i+B)
x.’{{]) - Dr x.!'(r) = Fr +O(f’ ): (AZB)
ry —= oo,
Setting
2
Or k) = 0(r,0)-58,()+ O (A21)

for E = k*/2 — 0, we find that, at ¢ = g,, the function
@{r) introduced in (21) satisfies the equation

B+ [gv(r) =1+ 1)r7]8, = 290r) (A22)
and the conditions
8,(0) = 0, Br) = c,r  +ort + O, (A23)

r_'_* ml-

Using Bethe's tnick [14] we arrive at

XS — X = ZJIXJ dr = 2[ ;—fo’dr:]-

Calculating the Wmnsklan with allowance for the
asymptotic behavior of the functions % {r) and 9,(r) for
r — oo, we obtain

2N, _ 1

A+ 2T T
w=2-1 v=2-pf-1

where { 2 1, and J > 0 is the exponent of decrease of the

potential at infinity. We note that the constant N, 1is

related to the effective range r}” corresponding to the

coupling-constant value at which the relevant level
appears f[see equation (6)].

Equations (A. 22)—(A 24) determine the function
¥{r) unambiguously. 7V At ! = 1, the coefficients in the
Coulomb curractiﬂns (12) are ﬂxprﬂssed n terms of the

’ and the Coulomb radius rl of the

I':l=

(A.24)

effective range rl

S}"Stﬂm as
=Xy, o= Xy (A.25)
lnxf = Inz
y ) g (A26)
+flot-2-3Nx + 109, |7
0
hy = k—In(x]x)), (A27)

) Indeed, the solution consty(r) e< 7 1o the homogeneous equa-
tion cannot be added to the function 047}, becanse, in view of the

inequatity —{ > v, this would change the asymptotic behavior in
(A.23) (we assume that B > 2; that is, the potential V.(r)

decreases at infinity faster than the centrifugal potential).
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where k = 1 - 2C + In(372) =0.251, C=0.577., g
the Euler constant, x = r/ry, and z is an arbitrary param.
eter that does not affect the Coulomb radius. The
Heaviside function ©(x — z) ensures convergence of the
integral in (A.26) at the upper limit. The above formy.
las make it possibie to calculate the Coulomb correc-
tions for an arbitrary local potential of the form (15)
Numerical solutions to eguations (A.19) and (A.22) for
X, and ¥, can be constructed by means of a procedure
that is sumilar to that used in [1] to treat the case of the
5 wave.

In order that the effective range r,m exist, the condi-

tion limz" "’ V(r) = 0 or § » 2/ + 5 must be satisfied

r—e

(the scattering length is well defined under the less
stringent condition B > 2/ + 3). For potentials decreas-
ing exponentially at infinity like the Yukawa potential,
the scattering length and effective range are weli
defined for all { values,
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