Effect of a magnetic field on the ionization of atoms
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The wnrzation probabitity of an atomic s state uncler the action of static
electric and magnetic fickls is calculated taking into account the {ou-
lomb miteraction between the escaping electron and the atomic core.
The structure of the perturbation scries for the energy of the level is
investigated and the asymptotic behavior of the higher orders of the
periurhation theory s found. @ 1996 Anrerican Institvte of Phvsics,
[ SO021-3640(96)00306-4}

1. Problems associated with the tonization of atoms and ions in strong fields have
tecome especially topical after the advent of lasers. A quasiclassical theory of tonization
in an electric field & was developed in the 1960s, and botly the case of ncutral atoms' ™
and the case of negative ions® of the type 17, 17, and so on were studied. ‘The first of

these problems is more complicated because the Coulomb interaction hetween the elec-
sy and the atomic core in the tunneling process must be taken into aceonnt.

The cffect of a magnetic field % on the Tevel width, i.c., on the jonization probahil-
by w(A,F), was studied in Refs. 5-8, but in these works only the case of ncgative ions
-was considered. Both the exponential factor® in the probability w and the pre-exponential
fetor®® were caleulated (granted, the latter factor was calculated, only in several par-

ieudar cases).

| As ts well known, taking into account the Coulomb interaction in problcims of this
ype presents great dilficultics and, for example, this has stitl not been done in the theory
of multiphoton 1onization of atoms” (we have in mind analytical formualas and not
mimerical calculations). For the problem of the ionization of an atomic level wnder the
“action of constant and uniform fields # and . such a calealation con be performed
Ccompletely e an analytical form, The basic resuits are presented below.

2. Let £=— x/2 be the energy of the atomic level (I=0), and let € and & be the
Mreduced” values of the external fields: |
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where r‘:fﬂ:mieﬁ!ﬁ.d:ﬁ.lf’-f-- 107 Viem and ._Fﬂ:m:‘j{:f'Ha]:2.35- 10? G are the atomic
anifs for the field intensities (here and below fi==e=m_ = [): the ratio .7/ % and the

mgle @ between the fields can be arbitrary, We note that for the ground state x=:1
He=1,1.344, and 1.259 for hydrogen, helium, and neon atoms, respectively), but for the
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Rydberg states this parameter can also be less than 1 (in the hydrogen atom s+ lin for
the ns levels). In this case the values e, i~ 1 are renched for fields much weaker than
atomic fields.

We shall employ the imaginary time method (FTM) to calculate the jonization prob
ability. The subbarrier electron trajectory satisfies the elassical eyuations of niotion b
with an imaginary “‘time.”’ The imaginary part of the truncated action function W eal
culated along the trajectory determines the probability of tunneling, i.c. {in {hc present

case), the ionization probability of the atom: '™
. 2
wi{ e, #) = expy — A Im W{0.1,) 1, (Y
!

where £y 15 the inttial (complex) time of the subbarrier motion and 1= 0 is the time
which the electron emerges from under the barrier. In the case of a §-function potential
(i.e.. Z=0, where Z is (he charge of the atomic fragment) the subbarrier trajectories can
be found analytically. We give an cxpression for the extremal trajectory minimizing f
W and determining the most likely tunneling path of the particle:

3 sinh 74 A Ta
x=ft~~|7—10—T——"l5in ¢ ;== (cosh 7— cosh 74)——— sin A,
1) Tsinh T ) w2 Eﬂ:&unh T '
I 0 . 0
“ P 2
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where 7={w;f (— 7<= 7=0), @, is the Larmor frequency, and the initial time of the
subbarrier motion is determined from the cquation

T;%— F.in?'ﬁ'{ T coth 75 |)1:_- ’y?', (%)
and y= k. %7 ¢L= NI/ € (the notation is the same as in Ref, 5), Substituting expressions (1)

into Hq. (2) pives™

. 2
W por( 7 n ) =y Py, M e expy ﬂg{’y,ﬂ) :

15}
R I 1 T{?} ! V2 " TE} ) K?
ey, 0)= ﬂ . ;’j SIn W COS° 0], oy --“i-*,

where the subscript short means that the formula refers to the ionization of flie s level
hound by a short-range (Z=10) potential (see Fig. 1}, and P is a pre-exponential facter
(calculated in Refs. 6-8 for the two cases #=0 and 6= /2, y<1); in the case of a
Aa-tunction potential P(0,6)=1.

We employ the maiching procedure' to calculate the Coulomb interaction, We in
troduce a matching point | such that k= '<2p, <ry<th, where b~ 1224 is the harrier
width and ro=7/# is the distance at which the Coulomb field of the atomic core
(charge 23 s equal in magnitude to the external field. For #>r, the Coulomb intera tion
distorts the subbarrier trajectory very little, and for r<<r | the wave function of the ¢lee
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- FG L g(y, @) as a fanction of the parameter y. The values of (he angle @ between the eleelric and nragnclic
~ fiekls ave indicated en the curves. The dashed onrves correspond 10 the comiplex solution g.( ¥, @).

~tron is practically identical to that in the free atom. Therefore the change produced in the
~ation function by the Coulomb potential 8V{(r)= —Z/r can be calculated from a per-

wrbation theory formula on the basis of the IMT:M
y
SW=—inIn Hrl—‘J’ oV{r(1))edr, | (G)
f

- where r(f} is the subbarrier trajectory. ry=r(f,), and n= 72/ w15 the Sommerfeld param-
eler. From Eqs. (3)—(6) we obtain alter simple but tedious calculiions
2n

erflﬂrl{'}:—"";'%}! {-”

2
(%) ==-Mx.qlf"-{;tf( v,0)

where Wy, (4,7 s defined in Eq. (5),

Cly, 60) n =2 +JT”1 Y 1
Y, U= eXpy N — (1T — . s
2y o E(ry Tt (8)
1:2
Rill?f?]

(Ra)

nd A, 1s the asymptotic coeflicicnt of the s-state wave lunction (in a free atom) at large
distances:

-
Yro(r)=A, . ’\JE—% e {rr)7 Y pmogT] | {9)

it the case of three-dimensional S-function potential A=, and for the ns levels of the
e . |72 - . . . .

hydrogen atom [A, [=2"""%/n1). The Coulomb interaction gives the factor in the square

hrackets i b, (73 but <does not ehiange the function ¢ (y. Y appearing in the exponential,

1
L(r) -'-'-'-| E{ T{E]" )% cos" 0+ Tﬁ

—_—

(cnsh 7o— cosh 1')E ( sinh v 7 ) :

sinh 7 sinh 7y 7
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F1G. 2. Coulomb factor C(y. &) in the ionization probability of the atoms. See Fq. (7).

. _ 1 =2 ! \ - KX 1 - - ] * .
Since C=1+3sin’0y + ... for y<€1 (*‘weak™ magaetic field), expression (7) tedoces
4 [ ] . "1 ] 1 F [
in this case to the well-known' ¥ Coulomb Tactor (2&71%) 7= 1. In the other limiting

case {y- ) the function C(y, ) becomes a consland, cqual 1o Veos &, if ¢+ w2 (sec
Fig. 2).

A numenical caleulation using Eqgs. (5} and (8) gives the curves presented in Figs. |
and 2. A magnetic field decreases (the jonization probability, stabilizing the level, This ix
due (o the fact that when the field % is switched on. the subbarrict trajectory of the
electron becomes “‘twisted”” and the barrier width # increases, At the same tine, the
Coulomb interaction greatty increases the ionization probability of a neutral atom as

compared with a negative ion (with the same binding cnerey «°/2 and comparable values
;i
of |;‘1. H‘Il )

We underscore the fact that the expressions (5) and {7} are asymptotically exact for
sufficiently weak fields (e, <€ 1), when the wonization probability w is exponentially
snudl It should be noted that in the case @=a1/2 and y> | {crossed electric and magnetic
fictds, Lorentzian tonization) the probability w, though small, by no means vanishes {in
contrast to the assertion made in Ref. 0).

3. By calculating the level width I'=7%iw(/4..7%) one can investigite the asymptotic
behiavior of the higher orders of the perturbation theory. Expanding the encrgy in (he
periurbation series

E= 2, F. d{y)&  y=j/e (10}
Kt
and using the dispersion relations,” we obtain from Zgs. {(7) and (8) in the limit &
r ! | 3 .
Eorm (2R a™ kP cg+ —+ ) a= K
272k Lfn . | 2k (5. ) {!

{(here we are studying the ground state, for which the odd orders of the perturbation
theory vanish wentically),
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A numerical analysis of Cqg. (4) showed that, together with the real solution
ol ¥, &) tound above, the equation also has a complex solution .y 0, for which
roociaf =iy ' gin fH-E’)(}f']}] in the limit y-sce, B corresponrds to the function
g7, 0) represented by the dashed curve m Fig. 1. Tt is obvious {tom Fig. 1 that there
exists 2y, () such that le (v, 0 <e(y, @) for y> Y. (). In this case the asymptotic
form of the perturbation-theory coclicient 15 determined not by the saddle point 7, but
rafher by the second sohition 7. (and its complex conjugate):

Ey(— DYk Re(e aYiFe, ko, (11a)

where a .= 3/2g . and o, arc complex parameters. for k= | and #= (0 {(ground state of the
hydrogen atom, parallel fields) we have

N=1 L.
glyvi=1, gl7, ?—fg'; 757)
whence
Y (8=0) =7 (V2+ )" —(V2— )] '=5270.. .. (12)

If y< v, . then the perturbation-theory series is a sign-constant serics, since the param-
eter a >0, IF > v, , however, then the signs of £,; should alternate in accordance with
Iq. (F1a). We checked this by calculating directly the higher orders of the perturbaiion
theory all the way to 2k =80 (for 2k= 10 our results agree with Ref. £4). It was shown
that the structure of the perturbation series does indeed change between y=35 and 5.5
(including alternation of the signs of F£,,). Moreover, for y<Uy,, the coelficients £5; are
stil] all of the saine order of magnitude (since the asymptotic parameter ¢ = 3/2 does not
depend on ¥}, and for y>> vy, additional (and very rapid) growth of the coefficients starts
in accordance with the decrease in lg. ().

In summary, complex subbarrier trajectortes can be important for determining the
higher orders of the pertuehation theory. The expression (7) for the level width I'=ho
does not change, however, since such trajectories do not satisty the boundary conditions
corresponding o the emergence of the particle from under the barrier and escape of the
particle to =

The pre-cxponential factor” in Eqs. (5) and (7) was also calenlated. This makes it
possible to compare the computational results with the experimentalt data. For lack of
space, we deler a discusston of these questions to a more detailed publication,

We wish to express our smcere appreciation to 3. M, Kamkov and V. 1D, Mur lor
very helpful discussions during the course of this work. This work was supported by the
Russian Fund for Fundamental Research (Project 95-(02-05417).

"We nole that the parameter y is analogons to the well-known Keldysh parameter in the theory of multiphoton

ionization of aloms,”
"lA check on this procedure is that the athittary matching point 7, should drop out of the finnl answer, as
happens in fegs, (7Y and (8),
"The pre-exponential factor was found (0 be a sharp funclion of ¥ for ¥ 1, 1., in the wegion of strong
magnetie fclds, and it must be taken into acenunl when making compurisons wath experiments,
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