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Effect of a magnetic field on the ionization of atoms
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The ionization probability of an atomics state under the action of static
electric and magnetic fields is calculated taking into account the Cou-
lomb interaction between the escaping electron and the atomic core.
The structure of the perturbation series for the energy of the level is
investigated and the asymptotic behavior of the higher orders of the
perturbation theory is found. ©1996 American Institute of Physics.
@S0021-3640~96!00306-4#

1. Problems associated with the ionization of atoms and ions in strong fields h
become especially topical after the advent of lasers. A quasiclassical theory of ioniza
in an electric fieldE was developed in the 1960s, and both the case of neutral atom1–3

and the case of negative ions4 of the type H2, I2, and so on were studied. The first of
these problems is more complicated because the Coulomb interaction between the
tron and the atomic core in the tunneling process must be taken into account.

The effect of a magnetic fieldH on the level width, i.e., on the ionization probabil-
ity w(E ,H), was studied in Refs. 5–8, but in these works only the case of negative i
was considered. Both the exponential factor5 in the probabilityw and the pre-exponential
factor6–8 were calculated~granted, the latter factor was calculated, only in several pa
ticular cases!.

As is well known, taking into account the Coulomb interaction in problems of th
type presents great difficulties and, for example, this has still not been done in the th
of multiphoton ionization of atoms9–12 ~we have in mind analytical formulas and not
numerical calculations!. For the problem of the ionization of an atomic level under th
action of constant and uniform fieldsE andH such a calculation can be performed
completely in an analytical form. The basic results are presented below.

2. Let E52k2/2 be the energy of the atomic level (l50), and lete andh be the
‘‘reduced’’ values of the external fields:

e5E /k3Ea , h5H/k2Ha , ~1!

whereEa5me
2e5/\455.14•109 V/cm andHa5me

2ce3/\352.35•109 G are the atomic
units for the field intensities~here and below\5e5me51); the ratioH/E and the
angle u between the fields can be arbitrary. We note that for the ground statek'1
(k51, 1.344, and 1.259 for hydrogen, helium, and neon atoms, respectively!, but for the
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Rydberg states this parameter can also be less than 1~in the hydrogen atomk51/n for
the ns levels!. In this case the valuese,h;1 are reached for fields much weaker tha
atomic fields.

We shall employ the imaginary time method~ITM ! to calculate the ionization prob-
ability. The subbarrier electron trajectory satisfies the classical equations of motion
with an imaginary ‘‘time.’’ The imaginary part of the truncated action functionW cal-
culated along the trajectory determines the probability of tunneling, i.e.~in the present
case!, the ionization probability of the atom:10,11

w~E ,H!} expH 2
2

\
Im W~0,t0!J , ~2!

where t0 is the initial ~complex! time of the subbarrier motion andt50 is the time at
which the electron emerges from under the barrier. In the case of ad-function potential
~i.e.,Z50, whereZ is the charge of the atomic fragment! the subbarrier trajectories can
be found analytically. We give an expression for the extremal trajectory minimizing
W and determining the most likely tunneling path of the particle:

x5 i
E

vL
2 S t2t0

sinh t

sinh t0
D sin u, y5

E

vL
2 ~cosht2 cosht0!

t0
sinh t0

sin u,

z5
E

2vL
2 ~t0

22t2!cosu, ~3!

wheret5 ivLt (2t0<t<0), vL is the Larmor frequency, and the initial time of th
subbarrier motion is determined from the equation

t0
22 sin2u~t0 coth t021!25g2, ~4!

andg5kH/cE5h/e ~the notation is the same as in Ref. 5!. Substituting expressions~3!
into Eq. ~2! givesa!

wshort~E ,H!5v0P~g,u!e expH 2
2

3e
g~g,u!J ,

~5!

g~g,u!5
3t0
2g F12

1

g S t0
2

g2 21D 1/2 sin u2
t0
2

3g2 cos
2uG , v05

k2

2
,

where the subscriptshortmeans that the formula refers to the ionization of thes level,
bound by a short-range (Z50) potential~see Fig. 1!, andP is a pre-exponential factor
~calculated in Refs. 6–8 for the two casesu50 andu5p/2, g!1); in the case of a
d-function potentialP(0,u)51.

We employ the matching procedure1 to calculate the Coulomb interaction. We in
troduce a matching pointr 1 such thatk21!r 1,r 0!b, whereb;k2/2E is the barrier
width and r 05AZ/E is the distance at which the Coulomb field of the atomic co
~chargeZ) is equal in magnitude to the external field. Forr.r 1 the Coulomb interaction
distorts the subbarrier trajectory very little, and forr,r 1 the wave function of the elec-
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tron is practically identical to that in the free atom. Therefore the change produced in
action function by the Coulomb potentialdV(r )52Z/r can be calculated from a per-
turbation theory formula on the basis of the IMT:b!

dW52 ih ln kr 12E
t1

0

dV~r ~ t !!dt, ~6!

wherer (t) is the subbarrier trajectory,r 15r (t1), andh5Z/k is the Sommerfeld param-
eter. From Eqs.~3!–~6! we obtain after simple but tedious calculations

w~E ,H!5uAksu2F2e C~g,u!G2h

wshort~E ,H!, ~7!

wherewshort(E ,H) is defined in Eq.~5!,

C~g,u!5 expH ln t0
2g

1E
0

t0
dtF g

j~t!
2

1

t02tG J , ~8!

j~t!5H 14 ~t0
22t2!2 cos2u1t0

2F S cosht02 cosht

sinh t0
D 22S sinh t

sinh t0
2

t

t0
D 2Gsin2uJ 1/2

~8a!

andAks is the asymptotic coefficient of thes-state wave function~in a free atom! at large
distances:

c0~r !'AksAk3

2p
e2kr~kr !h21, r@k21 ~9!

~in the case of three-dimensionald-function potentialA51, and for thens levels of the
hydrogen atomuAnsu52n21/2/n!). The Coulomb interaction gives the factor in the squar
brackets in Eq.~7! but does not change the functiong(g,u) appearing in the exponential.

FIG. 1. g(g, u) as a function of the parameterg. The values of the angleu between the electric and magnetic
fields are indicated on the curves. The dashed curves correspond to the complex solutiongc(g,u).
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SinceC511 1
9 sin

2ug21 . . . for g!1 ~‘‘weak’’ magnetic field!, expression~7! reduces
in this case to the well-known1–3,10Coulomb factor (2k3/E)2h@1. In the other limiting
case (g→`) the functionC(g,u) becomes a constant, equal to 1/cosu, if uÞp/2 ~see
Fig. 2!.

A numerical calculation using Eqs.~5! and~8! gives the curves presented in Figs.
and 2. A magnetic field decreases the ionization probability, stabilizing the level. Th
due to the fact that when the fieldH is switched on, the subbarrier trajectory of th
electron becomes ‘‘twisted’’ and the barrier widthb increases. At the same time, th
Coulomb interaction greatly increases the ionization probability of a neutral atom
compared with a negative ion~with the same binding energyk2/2 and comparable values
of uAk l u2).

We underscore the fact that the expressions~5! and~7! are asymptotically exact for
sufficiently weak fields (e, h!1), when the ionization probabilityw is exponentially
small. It should be noted that in the caseu5p/2 andg.1 ~crossed electric and magneti
fields, Lorentzian ionization! the probabilityw, though small, by no means vanishes~in
contrast to the assertion made in Ref. 6!.

3. By calculating the level widthG5\w(E ,H) one can investigate the asymptoti
behavior of the higher orders of the perturbation theory. Expanding the energy in
perturbation series

E5 (
k50

`

E2k~g!E2k, g5h/e ~10!

and using the dispersion relations,13 we obtain from Eqs.~7! and ~5! in the limit k→`

E2k'~2k!!a2kkbS c01 c1
k

1 . . . D , a5
3

2k3g~g,u!
~11!

~here we are studying the ground state, for which the odd orders of the perturb
theory vanish identically!.

FIG. 2. Coulomb factorC(g, u) in the ionization probability of the atoms. See Eq.~7!.
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A numerical analysis of Eq.~4! showed that, together with the real solutio
t0(g,u) found above, the equation also has a complex solutiontc(g,u), for which
tc5 ip@12 ig21 sinu1O(g23)# in the limit g→`. It corresponds to the function
gc(g,u) represented by the dashed curve in Fig. 1. It is obvious from Fig. 1 that t
exists ag* (u) such thatugc(g,u)u,g(g,u) for g.g* (u). In this case the asymptotic
form of the perturbation-theory coefficient is determined not by the saddle pointt0 but
rather by the second solutiontc ~and its complex conjugate!:

E2k'~21!k~2k!!Re~ccac
2k!kbc, k→`, ~11a!

whereac53/2gc andcc are complex parameters. Fork51 andu50 ~ground state of the
hydrogen atom, parallel fields! we have

g~g,0![1, gc~g,0!5 i
3p

2g S 11
p2

3g2D ,
whence

g* ~u50!5p@~A211!1/32~A221!1/3#2155.270 . . . . ~12!

If g,g* , then the perturbation-theory series is a sign-constant series, since the p
etera.0. If g.g* , however, then the signs ofE2k should alternate in accordance wit
Eq. ~11a!. We checked this by calculating directly the higher orders of the perturba
theory all the way to 2k580 ~for 2k<10 our results agree with Ref. 14!. It was shown
that the structure of the perturbation series does indeed change betweeng55 and 5.5
~including alternation of the signs ofE2k). Moreover, forg,g* the coefficientsE2k are
still all of the same order of magnitude~since the asymptotic parametera53/2 does not
depend ong), and forg.g* additional~and very rapid! growth of the coefficients starts
in accordance with the decrease inugc(g)u.

In summary, complex subbarrier trajectories can be important for determining
higher orders of the perturbation theory. The expression~7! for the level widthG5\v
does not change, however, since such trajectories do not satisfy the boundary con
corresponding to the emergence of the particle from under the barrier and escape
particle to`.

The pre-exponential factorc! in Eqs. ~5! and ~7! was also calculated. This makes
possible to compare the computational results with the experimental data. For la
space, we defer a discussion of these questions to a more detailed publication.

We wish to express our sincere appreciation to B. M. Karnkov and V. D. Mur
very helpful discussions during the course of this work. This work was supported by
Russian Fund for Fundamental Research~Project 95-02-05417!.

a!We note that the parameterg is analogous to the well-known Keldysh parameter in the theory of multipho
ionization of atoms.9

b!A check on this procedure is that the arbitrary matching pointr 1 should drop out of the final answer, as
happens in Eqs.~7! and ~8!.

c!The pre-exponential factor was found to be a sharp function ofg for g@1, i.e., in the region of strong
magnetic fields, and it must be taken into account when making comparisons with experiments.
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