Effect of a magnetic field on the ionization of atoms
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The ionization probability of an atom&state under the action of static
electric and magnetic fields is calculated taking into account the Cou-
lomb interaction between the escaping electron and the atomic core.
The structure of the perturbation series for the energy of the level is
investigated and the asymptotic behavior of the higher orders of the
perturbation theory is found. €996 American Institute of Physics.
[S0021-364(®6)00306-4

1. Problems associated with the ionization of atoms and ions in strong fields have
become especially topical after the advent of lasers. A quasiclassical theory of ionization
in an electric field* was developed in the 1960s, and both the case of neutral &tdoms
and the case of negative idnsf the type H', |-, and so on were studied. The first of
these problems is more complicated because the Coulomb interaction between the elec-
tron and the atomic core in the tunneling process must be taken into account.

The effect of a magnetic fieldZ on the level width, i.e., on the ionization probabil-
ity w(#,.7%), was studied in Refs. 5-8, but in these works only the case of negative ions
was considered. Both the exponential fatiarthe probabilityw and the pre-exponential
factof® were calculatedgranted, the latter factor was calculated, only in several par-
ticular casep

As is well known, taking into account the Coulomb interaction in problems of this
type presents great difficulties and, for example, this has still not been done in the theory
of multiphoton ionization of atonis*? (we have in mind analytical formulas and not
numerical calculations For the problem of the ionization of an atomic level under the
action of constant and uniform field§ and.7Z such a calculation can be performed
completely in an analytical form. The basic results are presented below.

2. Let E= — «?/2 be the energy of the atomic levdl<0), and lete andh be the
“reduced” values of the external fields:

e=41k3%,, h=TK>,, 1)

where #,=m2e%/#*=5.14 10° V/cm and.77,=mZce’/4°=2.3510° G are the atomic
units for the field intensitieghere and belowi=e=m,=1); the ratio.7Z/# and the
angle # between the fields can be arbitrary. We note that for the ground statke
(k=1, 1.344, and 1.259 for hydrogen, helium, and neon atoms, respegtivetyfor the
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Rydberg states this parameter can also be less tHantthe hydrogen atonx=1/n for
the ns levels. In this case the values,h~1 are reached for fields much weaker than
atomic fields.

We shall employ the imaginary time methdd@M) to calculate the ionization prob-
ability. The subbarrier electron trajectory satisfies the classical equations of motion but
with an imaginary “time.” The imaginary part of the truncated action functityncal-
culated along the trajectory determines the probability of tunneling(inethe present
cas®, the ionization probability of the atorff:'

W( &, 7)o exp{ —% Im W(O,to)J, 2
wheret, is the initial (compleX time of the subbarrier motion artd=0 is the time at
which the electron emerges from under the barrier. In the caseSefuaction potential
(i.e.,Z=0, whereZ is the charge of the atomic fragmeniie subbarrier trajectories can
be found analytically. We give an expression for the extremal trajectory minimizing Im
W and determining the most likely tunneling path of the particle:

& sinh 7\ ) ~ o o o .
X=I wf T~ Tognh 7 sing, y= wE(cos T— COS TO)sinh 7o sin 6,
z= —wa(rg—rz)cos 0, 3

wherer=iw t (—79=7<0), w_ is the Larmor frequency, and the initial time of the
subbarrier motion is determined from the equation

TS— sirt4( T cOth 79— 1 2= 72, (4
andy= k.7ZIc£=hle (the notation is the same as in Ref. Substituting expression8)

into Eq. (2) gives

) 2
Wenor( #,7) = woP(,0)e exp[ - 3290 a>},

310 1 1% vz . 1(% ;2 ‘(2
g( Y, 0)— 2 1 2 1 sSin (9 3 2 cos 6 y wo= 2 y

where the subscripgthort means that the formula refers to the ionization of shievel,
bound by a short-rangeZ&0) potential(see Fig. 1, andP is a pre-exponential factor
(calculated in Refs. 6—8 for the two casés 0 and = /2, y<1); in the case of a
S-function potentialP(0,6) = 1.

We employ the matching proceddir® calculate the Coulomb interaction. We in-
troduce a matching point; such thatk~1<r;<r,<b, whereb~ «?/27 is the barrier
width andr,=Z/# is the distance at which the Coulomb field of the atomic core
(chargez) is equal in magnitude to the external field. Forr, the Coulomb interaction
distorts the subbarrier trajectory very little, and forr, the wave function of the elec-
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FIG. 1. g(y, ) as a function of the parametgr The values of the anglé between the electric and magnetic
fields are indicated on the curves. The dashed curves correspond to the complex sp{uti@h.

tron is practically identical to that in the free atom. Therefore the change produced in the
action function by the Coulomb potentiaV(r)=—Z/r can be calculated from a per-
turbation theory formula on the basis of the IMT:

SW=—igIn krq— ft05V(r(t))dt, (6)
1

wherer (t) is the subbarrier trajectory,=r(t,), and p=2/« is the Sommerfeld param-
eter. From Eqs(3)—(6) we obtain after simple but tedious calculations
27

W(Z,70)=|Asl? Wohorl £,.7), (7

2
EC(% 0)

wherewg, o £,.7) is defined in Eq(5),

C(7,0)= exp| In -2 +JTOd LA 8
(7,0)= expIn 2y Jo E&D 17|’ ®
1 coshrg— coshr\? [sinhr 7|2 v
_l T2 2v2 2 0 — - [
f(T)—{4(7'0 )% cog 6+ 75 sinh 7, ) (SinhTo To) sze)
(8a)

andA . is the asymptotic coefficient of thestate wave functiofin a free atomat large
distances:

3
lﬁo(r)*AKs\/% e “"(kr)7 1, r>kt 9

(in the case of three-dimensioné&ifunction potentialA= 1, and for thens levels of the
hydrogen atomA,,J =2""Y%/n!). The Coulomb interaction gives the factor in the square
brackets in Eq(7) but does not change the functigfiy, ) appearing in the exponential.
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FIG. 2. Coulomb factoC(y, 6) in the ionization probability of the atoms. See E@).

SinceC=1+ 1 sirfAy*+ ... for y<1 (“weak” magnetic field, expressior(7) reduces
in this case to the well-known®°Coulomb factor (Z%/#)?7>1. In the other limiting
case fy—) the functionC(y, #) becomes a constant, equal to 1/épd 6+ /2 (see
Fig. 2.

A numerical calculation using Eq5) and(8) gives the curves presented in Figs. 1
and 2. A magnetic field decreases the ionization probability, stabilizing the level. This is
due to the fact that when the field is switched on, the subbarrier trajectory of the
electron becomes “twisted” and the barrier widthincreases. At the same time, the
Coulomb interaction greatly increases the ionization probability of a neutral atom as
compared with a negative igwith the same binding energy?/2 and comparable values
of |AK||2)'

We underscore the fact that the expressi@sand(7) are asymptotically exact for
sufficiently weak fields ¢, h<<1), when the ionization probabilityy is exponentially
small. It should be noted that in the cae 7/2 andy>1 (crossed electric and magnetic
fields, Lorentzian ionizationthe probabilityw, though small, by no means vanishas
contrast to the assertion made in Ref. 6

3. By calculating the level width’=7%w(#,.77) one can investigate the asymptotic
behavior of the higher orders of the perturbation theory. Expanding the energy in the
perturbation series

E=2 Ea(y)#%, y=hle (10)
k=0
and using the dispersion relatiotswe obtain from Eqs(7) and(5) in the limit k—o
c 3
~ 1 92KKB -t [ —
Eo~(2k)!a k”| co+ K +...], a 2:39(7.0) (11

(here we are studying the ground state, for which the odd orders of the perturbation
theory vanish identically
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A numerical analysis of Eq(4) showed that, together with the real solution
7o(y,0) found above, the equation also has a complex solutigry, ), for which
re=im[1—iy ! sing+0O(y )] in the limit y—oe. It corresponds to the function
g.(vy,0) represented by the dashed curve in Fig. 1. It is obvious from Fig. 1 that there
exists ay, (#) such thatig.(v,0)|<g(y,6) for y>1v,(6). In this case the asymptotic
form of the perturbation-theory coefficient is determined not by the saddle pgintit
rather by the second solutian (and its complex conjugake

Eo~(—1)(2k)!Re(c.a2f)kPe, k—oo, (11a

wherea,=3/2g, andc. are complex parameters. For1 andd=0 (ground state of the
hydrogen atom, parallel fiellsve have

_ 3w 772)
g(’)’,O)=1, QC(Y’O)_IZ_)/ 1+3_’y2 y
whence
v, (0=0)=a[ (V2+ 1)~ (2-1)¥3"1=5.270. ... (12)

If y<v, , then the perturbation-theory series is a sign-constant series, since the param-
etera>0. If y>1y, , however, then the signs &, should alternate in accordance with

Eq. (119. We checked this by calculating directly the higher orders of the perturbation
theory all the way to R=80 (for 2k<10 our results agree with Ref. 14t was shown

that the structure of the perturbation series does indeed change bepwe®erand 5.5
(including alternation of the signs &,,). Moreover, fory<y, the coefficientE,, are

still all of the same order of magnitudsince the asymptotic parameter 3/2 does not
depend ony), and fory> v, additional(and very rapiglgrowth of the coefficients starts

in accordance with the decrease|n(y)|.

In summary, complex subbarrier trajectories can be important for determining the
higher orders of the perturbation theory. The expres¢mrfor the level widthI'=#A
does not change, however, since such trajectories do not satisfy the boundary conditions
corresponding to the emergence of the particle from under the barrier and escape of the
particle tow,

The pre-exponential factdrin Egs.(5) and(7) was also calculated. This makes it
possible to compare the computational results with the experimental data. For lack of
space, we defer a discussion of these questions to a more detailed publication.

We wish to express our sincere appreciation to B. M. Karnkov and V. D. Mur for
very helpful discussions during the course of this work. This work was supported by the
Russian Fund for Fundamental Resea(etoject 95-02-0541)7

3We note that the parametgris analogous to the well-known Keldysh parameter in the theory of multiphoton
ionization of atoms.

YA check on this procedure is that the arbitrary matching pojnshould drop out of the final answer, as
happens in Eqg.7) and (8).

9The pre-exponential factor was found to be a sharp functioy &r y>1, i.e., in the region of strong
magnetic fields, and it must be taken into account when making comparisons with experiments.
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