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Abstract. The divergent Rayleigh—Sabdinger perturbation expansions for energy eigenvalues

of cubic, quartic, sextic and octic oscillators are summed using algebraic approximants. These
approximants are generalized Raapproximants that are obtained from an algebraic equation of
arbitrary degree. Numerical results indicate that given enough terms in the asymptotic expansion
the rate of convergence of the diagonal staircase approximant sequence increases with the degree.
Different branches of the approximants converge to different branches of the function. The
success of the high-degree approximants is attributed to their ability to model the function on
multiple sheets of the Riemann surface and to reproduce the correct singularity structure in
the limit of large perturbation parameter. An efficient recursive algorithm for computing the
diagonal approximant sequence is presented.

1. Introduction

The Schédinger equatiorHvy» = Ey, where
H = %p2+%x2+)»xﬂ @)

gives rise to a well known example of singular perturbation theory (Bender and Orszag
1978). This problem is of physical interest, as a prototypical quantum field theory and
as a model for molecular vibrations, and of mathematical interest, on account of the rich
singularity structure of the functio® (1). A characteristic feature of’ (1) is an infinite
sequence of branch points approaching a limit point at0. (Bender and Wu 1969, Simon
1970, Shanley 1986, Alvarez 1995, Bender and Orszag 1978 pp 350-61). The asymptotic
expansions for the energg,(») ~ > -, E, A", are therefore divergent for all = 0. These
expansions have become a standard test case for new summation procedures (Reid 1967,
Graffi et al 1970, Seznec and Zinn-Justin 1979, Caswell 1979, Dmitrieva and Plindov 1980,
Drummond 1981Cizek and Vrscay 1982, Cohen and Kais 1986, Wenigeal 1993), in
part because th&, can be easily computed even for extremely latge

The multiple-valued nature df (1) causes trouble for summation approximants that are
single valued. Consider for example the quartic oscillafos 4. It can be proved in that
case (Loeffelet al 1969) thatE (1) is Pac summable as long dasrgi| < . In practice,
the approximants place a sequence of poles along the negative real axis, simulating a branch
cut (Baker 1975). The convergence slows aggx| approacheg and fails completely at .
If A is pure real and negative then the eigenvalue corresponds to a double-valued complex
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resonance energy; = E, +i'/2, wherel" can be identified, at least approximately, with
the resonance width (Connor and Smith 1981). The plus and minus signs correspond to
the incoming and outgoing wave boundary conditions respectively. Sincg,ttege real
the Paé approximants for negative realare also real, and cannot converge to the correct
result.

The Paé approximantEp, »q(2) is a rational functionP, (1)/Qu (1) with a Taylor
expansion that reproduces the expansionE@k) up to given order. P, and Q, are
polynomials of degred. and M respectively that satisfy the linear equation

P(L) — Q)E() = OGLTMHh), 2

‘E(A) in (2) represents the power series in A natural generalization for double-
valued functions is a quadratic Radpproximant (Shafer 1974). The,[M, N] quadratic
approximant is a function of three polynomials B and C, of degreeL, M and N,
respectively, that satisfy

A(L) + BA)EL) + C(L)E?(L) = O\LTMHN+2) ()
The approximaniy, », yj(2) is given by the quadratic equation
AG) + BOYE () + COVER 4y () =0 (4)

with the double-valued solution

1 { B [Bzm _4C(x)]“2}

E[L,M.N](A) = E _A()») Az()n) A(A)

®)

Convergence theorems for these approximants exist for certain special cases (Baker and
Graves-Morris 1996 pp 544—69), but in practice applicability to functions of physical interest
has been justified numerically (Short 1979, Jezioetkal 1980, Liu and Bergersen 1981,
Common 1982, Mayer and Tong 1985,Tiaerget al 1986, De’'Bell 1992, Goodsoet al
1992, Hameret al 1992, Germann and Kais 1993). These approximants do not need to
simulate the branch cut with poles; they explicitly contain square-root branch points. For
the quartic oscillator they converge at negative reébergeev 1995).

In the same spirit, an algebraic approximant of arbitrary degrg&hort 1979, Brak
and Guttmann 1990) can be defined by the equation

Z AW ()\)E[kpoﬁmﬁ---qpk]()&) =0 (6)
k=0

where A® (1) are polynomials in. of degreep, that satisfy
Y AP@E () = 0 n=m—-1+) p. (7
k=0 k=0

This is a special case of a class of summation schemes known collectively @&$iPadite
approximation (Hermite 1893, Padl894, Della Dora and Di Crescenzo 1979, Baker and
Graves-Morris 1996 pp 524-69). We will use high-degree algebraic approximants to sum
the expansion of the multiple-valued oscillator eigenvalue.

The paper of Short (1979) is the closest prototype of this study. Similar multiple-valued
approximants were constructed so as to incorporate the known branch-point structure of
Feynman matrix elements. For the multiple-valued functiad t z), Short observed that
guadratic approximants reduce the error by roughly two orders of magnitude compared with
Pack approximants. He found similar improvement in accuracy for quadratic and especially
cubic approximants for certain Feynman integrals and found that these approximants provide,
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in effect, analytic continuations of the asymptotic expansion from the first Riemann sheet
to the second.

Here we present a further demonstration of the power of algebraic approximants to
describe functions with complicated branch-point structure. We find that the convergence
for the ground-state energy of anharmonic oscillators improves with approximant degree,
given enough terms in the expansion. High-degree approximants yield very high accuracy
for the principal value ofE()) and reasonably good results on higher sheets. Certain
choices of the approximant indices give the known laxgsingularity structure, and the
corresponding numerical results are especially accurate. Section 2 presents an efficient
algorithm for computing algebraic approximants. Section 3 analyses the singularity structure
of the approximants and in section 4, as a simple demonstration, we determine the rate of
convergence for the infinite-valued functiarr® In(1 + ). Section 5 contains results for
quartic, cubic, sextic and octic oscillators.

2. Computational algorithm

The most direct method for calculating algebraic approximants is to solve the systepi of
linear homogeneous equations for the coefficients of the polynomiflsA®, ..., A,
that follows from (7) after collecting terms by powers ofDella Dora and Di Crescenzo
1979). This approach is appropriate for low-order analyses, but the number of arithmetic
operations increases very rapidly with increasing

For the conventional ‘linear’ P&dapproximantsi® = 1) the [L, M] approximants
with L ~ M tend in general to be the most accurate (Baker 1975). Our experience is
that quadratic and higher-degree approximants with approximately equal indexes are also
the most accurate. Here we present an algorithm for computing such approximants that is
much faster and needs much less computer memory at large orders than solving the system
of linear equations. It yields what we will call tiltagonal staircasesequence of degree-
approximantsEg, y(A), n =m —Lm,m+1,m+2, ..., with

{m,n}z[j,j,...,jj—l,j—l,...,j—l] (8)
i m+1—i
where j satisfies the equatioan +1)j = n —i +2 with 1 < i < m + 1. Table 1 lists
representative examples of the index sequences, illustrating the correspondence between
{m,n} and [po, ..., pul-

Our algorithm is an extension to arbitrary degree of the Berlekamp—Massey algorithm
(Baker and Graves-Morris pp 153-66). It was used previously by Mayer and Tong (1985)
for calculating quadratic approximants and is a special case of a more general algorithm,
for Pace—Hermite approximants, derived by Sergeev (1986). R.gh) be a sequence of
residual functions such that

Z AW EFQ) = A"TIR, (M). 9)
k=0
Note that we have added the subscripb A®, to indicate whichEy,, . it corresponds to
in the diagonal staircase sequence. We will assumerghag 0 for all n.

The lowest-order approximant of degreewill have eachA® (1) equal to a constant.
Any solution for the sefA®, AD ... A™} can be multiplied by a common non-zero
factor. Thus, one of these constants is arbitrary. The remainingnstants are determined
from the accuracy-through-order conditions, (7). The lowest-order approximant corresponds
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Table 1. Indices of approximants that comprise the diagonal staircase sequemcés.the
degree of the approximant ands the highest order in the asymptotic expansion that is needed

in the calculation. The entrieg{, p1, ..., pm] give the degrees of the constituent polynomials.
n m=1 m=2 m=3 m=4

0 [00]

1 [0 [0,0,0]

2 [11] [1,0,0] [0,0,0,0]

3 [2,1] [1,1,0] [1,0,0,0] [0,0,0,0,0]

4 [22] [1,1,1] [1,1,0,0] [1,0,0,0,0]

5

3.2]  [211] [1,1,1,0] [1.1,0,0,0]

50 [2525] [17,16,16] [12121212] [10,10,9,9,9]

ton = m — 1, so that there can be such conditions. The solution for this approximant is
Af,f)_l(x) = ('Z)(—Eo)'"*", as can be verified by substitution into (9). It follows that

AM'Ry—1(V) = [E()L) - EO]m (10)
If n < m — 1 then the resulting approximant cannot be of degtedHowever, if we define
0 k>n+1
AP Q) = 1 11
n() (l’l: >(_E0)n+l—k k<n+1 ( )
forn=-1,0,1,...,m — 1, then (9) will be satisfied for ak > 0, with
MR, () = [E() — Eo]" ™. (12)

The following theorem provides recursion relations satisfied by the residuals and by the
constituent polynomials.

Theorem 1Let {c,.1,¢cn2, ..., cam} DE @ set of constants such that
Rym-1() + Y jM 7 Ry_m14(00) = O(™) (13)
j=1

where therR; are residuals of degree-approximants according to (9). Then the constituent
polynomials of the diagonal approximant sequence satisfy the recursion

APG) = 1AL, 100+ A, 1y ) (14)
j=1
forn > m—1, with A® atn < m—1 given by (11), and the corresponding residuals satisfy

W' Ry () = RV + Y cnjh " Rym11; () (15)
j=1

with R, atn < m given by (12).

Proof. Substitution of (14) into (9) gives

m

D TAPOIER ) = AT Ry a ) Y e AT Ry 1 (1) (16)
k=0 j=1
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which according to (13) goes to zero asymptotically as"®"). Thus, (14) satisfies the
accuracy-through-order condition (7), which implies that thé$&1) are indeed constituent
polynomials of the approximant. The fact that the degrees of the polynomials satisfy the
index pattern given by (8) can be proved by induction using (14). Comparison of (16) with
(9) establishes (15). |

In practice, we calculate the, ; in the following way (Sergeev 1986). First we define
subsidiary residuals, (1) according to

ro(A) = Rp—m—1() (17)

rp() = A rp—1 () + ¢ Ruc—14p (M) (18)
with

C:’l.p = _rp—l(o)/Rn—m—l+p(o)- (19)

One can show by induction that

P
Wrp(0) = Rym1) + Y ¢l ;M Ry 11 (N) (20)
j=1

and that, (1) is non-singular at. = 0. Comparing (20) for the cage= m with (13) shows
that thec;, ; are equal to the, ;. Evaluation of (19) followed by (18) gives a recursive
calculation of thec, ; that is convenient to carry out by computer. Comparing (20) with
(15) shows thaiR, (1) = r,, (1).

It turns out that theA® generated by this algorithm are normalized so that the leading-
order coefficient ofA?~? (i.e. the coefficient multiplying./, with i and j defined by (8))
is equal to 1.

3. Branches of the approximants

Consider the diagonal approximant sequetdg (1), as defined in section 2. These
approximants can have as manyradvranches, corresponding to theroots of (6). Let us
determine the asymptotic behaviour of these branches-at0 and ath. — oo.

It follows from (6) that E,,(0) is a root of a polynomial P(E, ) =
Yo AY(0)EY, ,,- (We do not consider here the case of a multiple root, whgn, (0) is
also a root of ®/dEy, ,;, which may occur accidentally but is rare in practice.) According
to a theorem of Baker (Baker and Graves-Morris 1995, pp 534-5) the root of equation (6)
for which Ey, ,,(0) is equal toE(0) differs from ) °) E;A' by an error that is at worst
O(A"1). We call this root theprincipal branchand call the sheet of the Riemann surface
on which it approximates the function, tpencipal sheet In general, for all other branches
the A — 0 limit of the approximant will not be equal to the— O limit of the asymptotic
expansiony -, E,1". However, these approximants can, at least in principle, describe the
function E (1) on other sheets.

The larger behaviour is described by the following theorem.

Theorem 2Let i be the index defined in (8) that describes the pattern of the degrees of
the A®. In the limit » — oo, i — 1 branches off, (1) tend to constants, while the
remainingm 4+ 1 — i branches behave as/"+1-1,
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Proof. In the limit . — oo the asymptotic behaviour dafy, ,; (1) is given by the equation

i—1 m

1
D AroElum @) + 5 Y ALoEl () =0 (21)
k=0 k=i

whereAff{, are the leading-order (i.6./ or A/~ according to (8)) coefficients od¥(%).
Assume thatE, ,(A) ~ cA%, wherec anda are constants. We consider three possibilities:
@ =0,a >0, ande < 0. If @ = 0 then at leading order we havg,_p A% sc* = 0,
which hasi — 1 solutions forc if i > 1 and no solutions ifi = 1. If « > 0 then
AVl nl=de-t A0 — 0. This has a solution only i =m +1—i. If & <0,
then at leading order in we haveA'% = 0, which has no solution. 0

We determine the value af by solving for a root of (6) using an iterative numerical
algorithm. In practice, to ensure convergence to the particular branch of interest, we begin
with an estimate of the desired result obtained from some other method as the initial guess
for the root.

4. A simple example of a multiple-valued function

Consider the infinite-valued functiofi(A) = A [In(14+ 1) + 27 Ki], where K is an integer
indicating the branch. For the principal brandh,= 0, F has the asymptotic expansion

FO)y~1-Ia+ia2 -3+ -5+ (22)

It has been proved (Bender and Orszag 1978 pp 402-3) that the convergence of linear
approximants for (22) to the principal branch is geometric. We know of no such theoretical
estimates for higher-degree approximants but find numerically that the diagonal sequences
of approximants of any degree also converge geometrically, with

1— (14 p)m+d7 eXp(rf_Tl [m—;l]) n

1— (141D exp(ZLK)

|F{m,n}()‘-) - F()‘-)| X

(23)

where [’"7*1] is the greatest integer less than or equaﬂ%é. It follows that the approximant
sequence will converge on those branches for which< ['"T‘l]. On such branches, (23)
in the limit of largem reduces to

|Finy — F| o [3IP(L+ 1) + 72K %" m ", (24)

Thus, increasing the degreealways increases the rate of convergence in the limit of large-
ordern. However, the convergence rate is slower for largercorresponding to branches
that are more distant from the principal branch.

Of particular interest is the determination of the optimafor givenn. Figure 1 shows
the accuracy against at given values of: for the principal branch and for thgK| = 2
branches. In the appendix we develop the following expression for the optimal

m=~ (n+2)Y% -1 (25)

As shown in figure 1, this expression does in practice give very nearly the highest accuracy.
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Figure 1. Dependence of accuracy on the degreef the algebraic approximant of orderin
the diagonal staircase sequence for the funcfich) = A~1[In(1+ 1) + 27iK] on the branches
K =0andK = +2 atx = 1. The optimaln for givenn is indicated by a circle. The predicted
optimalm, according to (25) is indicated by a star. The measure of accuraegisF,, ) — F|,
which is roughly equal to the number of correct digits after the decimal point.

5. Anharmonic oscillators

5.1. Quartic oscillator

We have computed the exact asymptotic expansion coefficients for the ground-state energy
of the quartic oscillator through 600th order using a linear algebraic methddb@&aet al

1988, Dunnet al 1994). The coefficients are rational numbers. Calculations of diagonal
staircase approximant sequences were carried out with Mathematica (Wolfram 1991) in
multiple-precision arithmetic (5000 digits), because the recursive algorithm is numerically
unstable. The accuracy @&, ,, for various is shown in figures 2—4.

Figure 2 shows the convergence jat= % for the principal branch ofE (1), which
corresponds to the ground-state energy. The 20th degree approximant sequence appears to
converge to 80 decimal digits, which, incidently, surpasses the highest accuracy previously
reported for this result, obtained by Meil3ner and Steinborn (1997) from an iterative
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8op A=1/2

E = 0.696 175 820 765 145 927 828 753 938
P 304 967 092 300 033 355 610 417 044
453 174 661 938 783 715 937 823 27

Number of correct digits
H )]
o o

N
o

Figure 2. Accuracy of diagonal staircase approximant sequerigs,, for the ground-state
energy of the quartic oscillator at= % n is the order of the perturbation expansion while
is the approximant degree. The measure of accuraeyl@sl E, .y — E|.

calculation. At large: we find that INEy,, ,; — E| ~ —n®, with the parametes increasing

with m. Form = 1 we find numerically thatr = 0.50, which is the same convergence

as linear approximants for the simple Stieltjes sedies—1)"n! (Bender and Orszag 1978

pp 404-5). Fom = 2, 3, 4, and 20, respectively, we fiad= 0.59, 0.67, 0.68, and 0.69.
Figure 3 compares the convergence for differendn the circle|r| = % The curves

here are polynomial fits, which suppress the relatively small fluctuations around regular

trends. Convergence at= i/2 is similar to that at. = % but the accuracy is slightly

poorer. (The physical meaning of imaginary coupling constants will be discussed below.)

At 1 = —% the potential does not support bound states. Linear approximants no longer

converge, but quadratic and, especially, cubic and higher-degree approximants converge

fairly well to a complex energy corresponding to a quasistationary state. Using the scaling

transformation of the variable = x’ exp(—mi/4) in the Hamiltonian (1), with8 = 4, one

can prove (Crutchfield 1978, Seznec and Zinn-Justin 1978)thaexp(§in)x’ corresponds

to a double-well problem
H =1p® — Ix? + /x" (26)

with eigenvaluesE’()') = —iE(A). These lie on the second sheet of Riemann surface. The
bottom panel of figure 3 corresponds to this branch, witk- %

Figure 4 shows the accuracy of results f6= % and\’ = 1—30. Convergence improves
significantly with increasing degree of the approximant sequences, especially for smaller
A'. We attribute this to the presence on this sheet of the infinite sequence of square-root
branch-point pairs, identified by Bender and Wu (1969). The positions of these branch
points are shown in figure 5. The closers to these points, the greater is the advantage of
increasing the degree of the approximarits= 1—%’0 corresponds to a deep in the heart of
the branch-point region. We find that approximants with degree less than 4 do not converge
at all at this point while the 20th degree approximants show slow but steady convergence
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Figure 3. Accuracy of diagonal staircase approximant sequerigs,; for the ground-state
energy of the quartic anharmonic oscillator at differendn the complex circleéx| = 3—2L The
curves have been smoothed by fitting with a polynomial. The approximant degree is indicated
as follows:m =1,------ im=2,———m=3, — — m=4,—..—; m=20,—. The
measure of accuracy islg |Ey,.,.y — E|. (The vertical scale is different for different)

to a pure imaginary energy,
E(3:6%) = E'()) = —1.411819 732 54i (27)

which corresponds to the ground-state energy in the double well. Moreover, another
branch of the degree 20 approximants converges (at very high orderD.Ril2 1621i,

which corresponds to the energy of the second excited state in the double well. These
two branches meet at the branch cut between the first branch points of the sequence,
+0.031 9934 0.036 7596i.

The principal branch of the functiof (1) at A = —i\’ corresponds to the complex
energy of the barrier resonance in the double wefl,, (') = —iE(—ix’). The small-
coupling expansion

r /_;i §/_§'-/2 @-/3
ELw() = > +4A 8”‘ + 16”‘ + (28)

represents a formal Rayleigh—Soétinger perturbation series for the anharmonic oscillator

10?x? + X'x* with an imaginary frequencw = —i. A similar perturbation theory for
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Figure 4. Accuracy of diagonal staircase approximant sequerigs,, for the ground-state
energy of the quartic anharmonic oscillator at various values dfhe curves are smoothed by
polynomial fits. The approximant degree is indicated by curve type as in figure 3. In the bottom
two panels approximants that have correct laxgaibe-root behaviour are marked by crosses.

resonances was recently used by Bedez (1996). Such broad resonances with the real part
of the energy near the potential maximum are associated with chemical reaction thresholds
(Friedmanet al 1995).

The caser = —Wloo shown in figure 6 corresponds to a quasistationary state with
extremely small width3E ~ +4.319 x 107144 The linear approximants are all pure real.
Their error decreases withuntil it becomes approximately equal t®E| and then it holds
steady at that level. This level of accuracy is eventually reached also by partial summation,
just before the divergence sets in. Approximants witl> 2 are real at low:, and their
accuracy stalls at the same level asioe 1, but at large:, once an imaginary part appears,
the accuracy increases rapidly. This behaviour is qualitatively similar to that observed in a
study of molecular resonances with two degrees of freedom using quadratic approximants
(Suvernev and Goodson 1997).

The cases. = 100 andir = 10° displayed at the bottom of figure 4 correspond to a
strong-coupling region, in whict (1) ~ boA/2 (Turbiner and Ushveridze 1988, Guardiola
et al 1992). Since linear and quadratic approximants cannot accurately model cube-root
singularities, their convergence is very slow. Convergence of approximantsmwitt? is
much better. The 20th degree approximants of the fofm,[...,j,j —1,j —1,j — 1]
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Figure 5. Diagram of analytic structure of (1) for the quartic oscillator on the second sheet
of the Riemann surface corresponding to the branch(@uto), showing pairs of square root
branch points with limit point at the origin (Shanley 1986).
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1 530 029 176 355 793 470 555 581 324 825 569 201 270 802
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Figure 6. Accuracy of diagonal staircase approximant sequeiiggs,; and of partial sums for
a very long-lived quasistationary state of the quartic oscillator. Accuracy of approximants with
m > 3 is indistinguishable from that of cubic approximants within the scale of the figure.

(n = 21 + 16) are marked by crosses. Their accuracy is significantly higher than the
overall accuracy of the 20th degree approximants (full curve) because they always have
correctA’® behaviour at large., according to the theorem in section 3.
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Apart from dependence of the accuracygnve have also studied the dependence on
m, that is, the convergence along rows in table 1. The behaviour is qualitatively the same
as that in figure 1. The condition (25) gives nearly optimal convergence.

5.2. Cubic oscillator

The harmonic oscillator with cubic perturbatio, = $p? + $x? + gx3, is a prototypical
system exhibiting resonances. Its complex eigenvalues have been studied numerically
(Drummond 1981) and analytically (Alvarez 1988, 1995). One can expect in general that
harmonic oscillators with polynomial perturbations of any degree greater than 2 will have an
infinite sequence of square-root branch points approaching the origin, and therefore should
benefit from the use of high-degree approximants.

Since odd-order terms of the energy seriesginare zero (because the energy is
an even function ofg), we define the perturbation parameter jas= g2 and analyse
the seriesE(\) ~ 3 — A — 4212 — ..., which has non-zero terms at every order.
Convergence of the algebraic approximants foe= ; (i.e. ¢ = 3), A = 3 exp(5ir/2),
and X = 100 is shown in figure 7. The convergence behaviour is quite similar to that for
the quartic oscillator. However, for the quartic oscillator, which has a cube-root branch
structure, there was significant improvement from increasingp to 3 and more modest
improvement form > 3. For the cubic oscillator, with a fifth-root structure (Alvarez
1995), there is a greater advantage from increasingbove 3. This is especially true
for the largex case, shown in the bottom panel, where the asymptotie behaviour
becomes dominant £ (x). For them = 20 case the accuracy of approximants of the
foom[j,...,j,j—1j—1j—1,j—1,j—1] is marked by crosses. Their accuracy is
consistently higher than the average accuracy of&pg,,;, as expected from the theorem
in section 3.

Using the scaling transformation = «/2x’, one can prove thabE(w °1) is an
eigenvalue in a potentiab®x?/2 + AY?x3. In particular, forw = exp(—xi/2), the value
—iE(e%' ) is an eigenvalue in a potentialx2/2+2.2x3. A shift transformation transforms
this modified potential back to the original potential,

—3x% 42123 = 1% a2 - 1/(541) (29)
wherex’ = x + 1/(3,1Y?), which implies that the eigenvaludd(}) in the original potential
can be expressed in terms of the new eigenvalues according to

E() = —iEW) + 1/(54) (30)

where) = exp(gizr)/\. The point)’ lies on the second sheet of the Riemann surface under
the cut(0, c0). E()') can be expressed &5 (i1) where E’ represents the second branch

of the functionE. Thus, the eigenvalues can be calculated either by direct summation of
the serieskE () on the principal sheet or by summing the expansion&b6ion its second

sheet. The latter approach is equivalent to expanding the potentfal2 + A2x2 at its

local maximum and then developing a complex perturbation theory for an upturned oscillator
with pure imaginary frequency with summation of the energy expansion on the second sheet.
As shown in the second panel of figure 7, this indirect approach does indeed converge to
the same result as the direct approach, and it benefits even more strongly from the use of
high-degree approximants, although the rate of convergence appears to always be less than
that of the direct analysis.
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Figure 7. Accuracy of diagonal staircase approximant sequeriggs,; for the ground state
energy of the cubic anharmonic oscillator at different values.ofhe curves are smoothed by
polynomial fits. The approximant degree is indicated by curve type as in figure 3. The energy
at2 = % exp(3in) is closely related to the energy at= 3 according to (30). In the bottom
panel approximants that have correct lakgéfth-root behaviour are marked by crosses.

5.3. Sextic and octic oscillators

Perturbation theory for sextia.£°) and octic £x®) anharmonic oscillators is very strongly
divergent—theE, grow as(2r)! and (3n)!, respectively. Linear approximants converge
very slowly for the sextic oscillator even at smallnd fail to converge at all for the octic
oscillator (Graffi and Grecchi 1978). Figure 8 shows that increasing the approximant degree
for the sextic oscillator considerably improves the convergence rate.

The problem of the octic oscillator is particularly interesting because thg] [and
[/ + 1, j] sequences of linear approximants converge to different limits, giving lower and
upper bounds to the true energy (Austin 1984). We find that higher-degree approximants
of a given index pattern also converge to an incorrect result but the number of digits of
agreement with the correct result is considerably greater than that for linear approximants.
This behaviour is shown in figure 9 for diagonal quadratic and cubic approximants. The
accuracy obtained both for the sextic and for the octic oscillator exceeds the accuracy
obtained by Wenigeet al (1993) using a nonlinear transformation of a renormalized series.
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Figure 8. Accuracy of diagonal staircase approximant sequerigs,; for the ground state
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oscillator at. = ﬁ, with approximant degree as indicated. The linear approximants converge

to 0.5272 (99.1% of the exact energy), the quadratic approximants converge to 0.532105
(100.0002%), and the cubic approximants converge to 0.532103926 (99.9999997%). The
‘exact’ energy for this system was calculated by numerical integration of the differential equation.

6. Conclusions

We have demonstrated that algebraic approximants of degree3 can be very effective

for summing perturbation series for quantum oscillators, both on the principal sheet and on
nearby sheets of the Riemann surface. These approximants can reproduce several sheets
of a multiple-valued function starting from the Taylor expansion of the function on the
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principal sheet. The eigenvalues of a given symmetry are branches of a single multiple-
valued function and the branch points form a sequence with the limit point at the origin.
Similar singularity structure has also been identified for other kinds of potentials, including
the angular spheroidal wave equation (Hunter and Guerrieri 1982), the two-centre Coulomb
problem (Grozdanov and Solov’ev 1990), and analytically solvable models (Behdr

1974, Ushveridze 1988). To the extent that such structure is typical of quantum mechanical
eigenvalues, we expect that algebraic approximants will be useful as a general summation
method for perturbation theories of the Satlinger equation.

We expect that the accuracy of our results could be improved by applying the
approximants to expansions calculated from renormalized Hamiltonians (Killingbeck 1981,
Artecaet al 1990 pp 126-31, Vinette andizek 1991, Wenigeet al 1993). For example,
Weniger (1996) obtained an accuracy of 46 digits from 198th order perturbation theory for
the ground-state energy of the quartic oscillator viith: % using a sequence transformation
to sum a renormalized expansion. This rate of convergence is somewhat better than that
reported here in figure 3.

A limitation of algebraic approximants is that in practice the number of expansion
coefficients needed for a given degree is approximately equal to the square of the degree.
Therefore, approximants of very high degree will be most useful for problems with few
degrees of freedom, for which the perturbation theory can be computed to very high order.
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Appendix. Predicting the optimal degree

The defining relation for algebraic approximants of the functio.), which we have
written in (7) as a polynomial irE, can also be thought of as a polynomial equation in
terms ofi. Thus, if we substitute the explicit expressidiy*, a; A’ for A®, then we can
write (7) in the form

q
Z BY(E)A = OO+ (A1)
i=0

in terms of a set of polynomial8®, with ¢ = [(n + 1)/(m + 1)]. It follows that
(7) simultaneously defines an algebraic approximant of degrder E(1) and algebraic
approximant of degree for the inverse functior.(E).

In principle, if E(A) has an infinite number of branches then we can expect that
the accuracy of the approximady, ,, will increase withm. However, the error in the
approximantky, ,, is related to the error in the approximany ;. Let

0 = E()"A) - E{m,n}()‘-s) A = )‘-(Es) - )‘-{q,n}(Es) (A2)
where; is the point at whichE is being summed and; = E(X,). ThenEj, ,(&;) =
Enny(M(Es) + 8X1). Assuming thaBa is small, it follows that

dE i n) dE

~ E; +0A— A3
ar SRy (A3)

E{m.n}()\s) ~ Es + 6A
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which implies thats E is proportional tosx. Let us assume that(E) is a multiple-valued
function. (This is true for our model functiontIn(1+ x).) Then we can expect that the
accuracy of the approximanis, ,; will increase withg. However,g decreases withw.
This implies that the accuracy @&, , will decreasewith m.

Thus, we needn somewhat large, to model the singularity structureEgh), but we
also needy somewhat large, to model the singularity structurerof). Based on these
arguments, we conjecture that the optimal approximant degree will correspomd-tq,
from which (25) follows.
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