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Abstract. The divergent Rayleigh–Schrödinger perturbation expansions for energy eigenvalues
of cubic, quartic, sextic and octic oscillators are summed using algebraic approximants. These
approximants are generalized Padé approximants that are obtained from an algebraic equation of
arbitrary degree. Numerical results indicate that given enough terms in the asymptotic expansion
the rate of convergence of the diagonal staircase approximant sequence increases with the degree.
Different branches of the approximants converge to different branches of the function. The
success of the high-degree approximants is attributed to their ability to model the function on
multiple sheets of the Riemann surface and to reproduce the correct singularity structure in
the limit of large perturbation parameter. An efficient recursive algorithm for computing the
diagonal approximant sequence is presented.

1. Introduction

The Schr̈odinger equationHψ = Eψ , where

H = 1
2p

2+ 1
2x

2+ λxβ (1)

gives rise to a well known example of singular perturbation theory (Bender and Orszag
1978). This problem is of physical interest, as a prototypical quantum field theory and
as a model for molecular vibrations, and of mathematical interest, on account of the rich
singularity structure of the functionE(λ). A characteristic feature ofE(λ) is an infinite
sequence of branch points approaching a limit point atλ = 0. (Bender and Wu 1969, Simon
1970, Shanley 1986, Alvarez 1995, Bender and Orszag 1978 pp 350–61). The asymptotic
expansions for the energy,E(λ) ∼∑∞n=0Enλ

n, are therefore divergent for allλ 6= 0. These
expansions have become a standard test case for new summation procedures (Reid 1967,
Graffi et al 1970, Seznec and Zinn-Justin 1979, Caswell 1979, Dmitrieva and Plindov 1980,
Drummond 1981,̌Cı́žek and Vrscay 1982, Cohen and Kais 1986, Wenigeret al 1993), in
part because theEn can be easily computed even for extremely largen.

The multiple-valued nature ofE(λ) causes trouble for summation approximants that are
single valued. Consider for example the quartic oscillator,β = 4. It can be proved in that
case (Loeffelet al 1969) thatE(λ) is Pad́e summable as long as| argλ| < π . In practice,
the approximants place a sequence of poles along the negative real axis, simulating a branch
cut (Baker 1975). The convergence slows as| argλ| approachesπ and fails completely atπ .
If λ is pure real and negative then the eigenvalue corresponds to a double-valued complex
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resonance energy,E = Er ± i0/2, where0 can be identified, at least approximately, with
the resonance width (Connor and Smith 1981). The plus and minus signs correspond to
the incoming and outgoing wave boundary conditions respectively. Since theEn are real
the Pad́e approximants for negative realλ are also real, and cannot converge to the correct
result.

The Pad́e approximantE[L,M](λ) is a rational functionPL(λ)/QM(λ) with a Taylor
expansion that reproduces the expansion ofE(λ) up to given order. PL and QM are
polynomials of degreeL andM respectively that satisfy the linear equation

P(λ)−Q(λ)E(λ) = O(λL+M+1). (2)

‘E(λ)’ in (2) represents the power series inλ. A natural generalization for double-
valued functions is a quadratic Padé approximant (Shafer 1974). The [L,M,N ] quadratic
approximant is a function of three polynomialsA, B and C, of degreeL, M and N ,
respectively, that satisfy

A(λ)+ B(λ)E(λ)+ C(λ)E2(λ) = O(λL+M+N+2). (3)

The approximantE[L,M,N ](λ) is given by the quadratic equation

A(λ)+ B(λ)E[L,M,N ](λ)+ C(λ)E2
[L,M,N ](λ) = 0 (4)

with the double-valued solution

E[L,M,N ](λ) = 1

2

{
−B(λ)
A(λ)

±
[
B2(λ)

A2(λ)
− 4

C(λ)

A(λ)

]1/2
}
. (5)

Convergence theorems for these approximants exist for certain special cases (Baker and
Graves-Morris 1996 pp 544–69), but in practice applicability to functions of physical interest
has been justified numerically (Short 1979, Jeziorskiet al 1980, Liu and Bergersen 1981,
Common 1982, Mayer and Tong 1985, Vaı̆nberget al 1986, De’Bell 1992, Goodsonet al
1992, Hameret al 1992, Germann and Kais 1993). These approximants do not need to
simulate the branch cut with poles; they explicitly contain square-root branch points. For
the quartic oscillator they converge at negative realλ (Sergeev 1995).

In the same spirit, an algebraic approximant of arbitrary degreem (Short 1979, Brak
and Guttmann 1990) can be defined by the equation

m∑
k=0

A(k)(λ)Ek[p0,p1,...,pk ](λ) = 0 (6)

whereA(k)(λ) are polynomials inλ of degreepk that satisfy
m∑
k=0

A(k)(λ)Ek(λ) = O(λn+1) n = m− 1+
m∑
k=0

pk. (7)

This is a special case of a class of summation schemes known collectively as Padé-Hermite
approximation (Hermite 1893, Padé 1894, Della Dora and Di Crescenzo 1979, Baker and
Graves-Morris 1996 pp 524–69). We will use high-degree algebraic approximants to sum
the expansion of the multiple-valued oscillator eigenvalue.

The paper of Short (1979) is the closest prototype of this study. Similar multiple-valued
approximants were constructed so as to incorporate the known branch-point structure of
Feynman matrix elements. For the multiple-valued function ln(1− z), Short observed that
quadratic approximants reduce the error by roughly two orders of magnitude compared with
Pad́e approximants. He found similar improvement in accuracy for quadratic and especially
cubic approximants for certain Feynman integrals and found that these approximants provide,
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in effect, analytic continuations of the asymptotic expansion from the first Riemann sheet
to the second.

Here we present a further demonstration of the power of algebraic approximants to
describe functions with complicated branch-point structure. We find that the convergence
for the ground-state energy of anharmonic oscillators improves with approximant degree,
given enough terms in the expansion. High-degree approximants yield very high accuracy
for the principal value ofE(λ) and reasonably good results on higher sheets. Certain
choices of the approximant indices give the known large-λ singularity structure, and the
corresponding numerical results are especially accurate. Section 2 presents an efficient
algorithm for computing algebraic approximants. Section 3 analyses the singularity structure
of the approximants and in section 4, as a simple demonstration, we determine the rate of
convergence for the infinite-valued functionλ−1 ln(1+ λ). Section 5 contains results for
quartic, cubic, sextic and octic oscillators.

2. Computational algorithm

The most direct method for calculating algebraic approximants is to solve the system ofn+1
linear homogeneous equations for the coefficients of the polynomialsA(0), A(1), . . . , A(m),
that follows from (7) after collecting terms by powers ofλ (Della Dora and Di Crescenzo
1979). This approach is appropriate for low-order analyses, but the number of arithmetic
operations increases very rapidly with increasingn.

For the conventional ‘linear’ Padé approximants (m = 1) the [L,M] approximants
with L ≈ M tend in general to be the most accurate (Baker 1975). Our experience is
that quadratic and higher-degree approximants with approximately equal indexes are also
the most accurate. Here we present an algorithm for computing such approximants that is
much faster and needs much less computer memory at large orders than solving the system
of linear equations. It yields what we will call thediagonal staircasesequence of degree-m
approximants,E{m,n}(λ), n = m− 1, m,m+ 1, m+ 2, . . . , with

{m, n} ≡
[
j, j, . . . , j︸ ︷︷ ︸

i

j − 1, j − 1, . . . , j − 1︸ ︷︷ ︸
m+1−i

]
(8)

wherej satisfies the equation(m + 1)j = n − i + 2 with 1 6 i 6 m + 1. Table 1 lists
representative examples of the index sequences, illustrating the correspondence between
{m, n} and [p0, . . . , pm].

Our algorithm is an extension to arbitrary degree of the Berlekamp–Massey algorithm
(Baker and Graves-Morris pp 153–66). It was used previously by Mayer and Tong (1985)
for calculating quadratic approximants and is a special case of a more general algorithm,
for Pad́e–Hermite approximants, derived by Sergeev (1986). LetRn(λ) be a sequence of
residual functions such that

m∑
k=0

A(k)n E
k(λ) = λn+1Rn(λ). (9)

Note that we have added the subscriptn to A(k), to indicate whichE{m,n} it corresponds to
in the diagonal staircase sequence. We will assume thatrn,0 6= 0 for all n.

The lowest-order approximant of degreem will have eachA(k)n (λ) equal to a constant.
Any solution for the set{A(0)n , A(1)n , . . . , A(m)n } can be multiplied by a common non-zero
factor. Thus, one of these constants is arbitrary. The remainingm constants are determined
from the accuracy-through-order conditions, (7). The lowest-order approximant corresponds
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Table 1. Indices of approximants that comprise the diagonal staircase sequences.m is the
degree of the approximant andn is the highest order in the asymptotic expansion that is needed
in the calculation. The entries [p0, p1, . . . , pm] give the degrees of the constituent polynomials.

n m = 1 m = 2 m = 3 m = 4

0 [0, 0]
1 [1, 0] [0, 0, 0]
2 [1, 1] [1, 0, 0] [0, 0, 0, 0]
3 [2, 1] [1, 1, 0] [1, 0, 0, 0] [0, 0, 0, 0, 0]
4 [2, 2] [1, 1, 1] [1, 1, 0, 0] [1, 0, 0, 0, 0]
5 [3, 2] [2, 1, 1] [1, 1, 1, 0] [1, 1, 0, 0, 0]
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

50 [25, 25] [17, 16, 16] [12, 12, 12, 12] [10, 10, 9, 9, 9]

to n = m− 1, so that there can bem such conditions. The solution for this approximant is
A
(k)

m−1(λ) =
(
m

k

)
(−E0)

m−k, as can be verified by substitution into (9). It follows that

λmRm−1(λ) = [E(λ)− E0]m. (10)

If n < m− 1 then the resulting approximant cannot be of degreem. However, if we define

A(k)n (λ) =


0 k > n+ 1(
n+ 1

k

)
(−E0)

n+1−k k 6 n+ 1
(11)

for n = −1, 0, 1, . . . , m− 1, then (9) will be satisfied for alln > 0, with

λn+1Rn(λ) = [E(λ)− E0]n+1. (12)

The following theorem provides recursion relations satisfied by the residuals and by the
constituent polynomials.

Theorem 1.Let {cn,1, cn,2, . . . , cn,m} be a set of constants such that

Rn−m−1(λ)+
m∑
j=1

cn,jλ
j−1Rn−m−1+j (λ) = O(λm) (13)

where theRk are residuals of degree-m approximants according to (9). Then the constituent
polynomials of the diagonal approximant sequence satisfy the recursion

A(k)n (λ) = λA(k)n−m−1(λ)+
m∑
j=1

cn,jA
(k)

n−m−1+j (λ) (14)

for n > m−1, withA(k)n at n < m−1 given by (11), and the corresponding residuals satisfy

λmRn(λ) = Rn−m−1(λ)+
m∑
j=1

cn,jλ
j−1Rn−m−1+j (λ) (15)

with Rn at n < m given by (12).

Proof. Substitution of (14) into (9) gives
m∑
k=0

A(k)n (λ)E
k(λ) = λn−m+1Rn−m+1(λ)+

m∑
j=1

cn,jλ
n−m+jRn−m−1+j (λ) (16)
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which according to (13) goes to zero asymptotically as O(λn+1). Thus, (14) satisfies the
accuracy-through-order condition (7), which implies that theseA(k)n (λ) are indeed constituent
polynomials of the approximant. The fact that the degrees of the polynomials satisfy the
index pattern given by (8) can be proved by induction using (14). Comparison of (16) with
(9) establishes (15). �

In practice, we calculate thecn,j in the following way (Sergeev 1986). First we define
subsidiary residualsrp(λ) according to

r0(λ) = Rn−m−1(λ) (17)

rp(λ) = λ−1[rp−1(λ)+ c′n,pRn−m−1+p(λ)] (18)

with

c′n,p = −rp−1(0)/Rn−m−1+p(0). (19)

One can show by induction that

λprp(λ) = Rn−m−1(λ)+
p∑
j=1

c′n,jλ
j−1Rn−m−1+j (λ) (20)

and thatrp(λ) is non-singular atλ = 0. Comparing (20) for the casep = m with (13) shows
that thec′n,j are equal to thecn,j . Evaluation of (19) followed by (18) gives a recursive
calculation of thecn,j that is convenient to carry out by computer. Comparing (20) with
(15) shows thatRn(λ) = rm(λ).

It turns out that theA(k)n generated by this algorithm are normalized so that the leading-
order coefficient ofA(i−1)

n (i.e. the coefficient multiplyingλj , with i andj defined by (8))
is equal to 1.

3. Branches of the approximants

Consider the diagonal approximant sequenceE{m,n}(λ), as defined in section 2. These
approximants can have as many asm branches, corresponding to them roots of (6). Let us
determine the asymptotic behaviour of these branches atλ→ 0 and atλ→∞.

It follows from (6) that E{m,n}(0) is a root of a polynomialP(E{m,n}) =∑m
k=0A

(k)
n (0)E

k
{m,n}. (We do not consider here the case of a multiple root, whenE{m,n}(0) is

also a root of dP/dE{m,n}, which may occur accidentally but is rare in practice.) According
to a theorem of Baker (Baker and Graves-Morris 1995, pp 534–5) the root of equation (6)
for which E{m,n}(0) is equal toE(0) differs from

∑∞
i=0Eiλ

i by an error that is at worst
O(λn+1). We call this root theprincipal branch and call the sheet of the Riemann surface
on which it approximates the function, theprincipal sheet. In general, for all other branches
theλ→ 0 limit of the approximant will not be equal to theλ→ 0 limit of the asymptotic
expansion

∑∞
n=0Enλ

n. However, these approximants can, at least in principle, describe the
functionE(λ) on other sheets.

The large-λ behaviour is described by the following theorem.

Theorem 2.Let i be the index defined in (8) that describes the pattern of the degrees of
the A(k)n . In the limit λ → ∞, i − 1 branches ofE{m,n}(λ) tend to constants, while the
remainingm+ 1− i branches behave asλ1/(m+1−i).
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Proof. In the limit λ→∞ the asymptotic behaviour ofE{m,n}(λ) is given by the equation

i−1∑
k=0

A
(k)

n,0E
k
{m,n}(λ)+

1

λ

m∑
k=i

A
(k)

n,0E
k
{m,n}(λ) = 0 (21)

whereA(k)n,0 are the leading-order (i.e.λj or λj−1 according to (8)) coefficients ofA(k)n (λ).
Assume thatE{m,n}(λ) ∼ cλα, wherec andα are constants. We consider three possibilities:
α = 0, α > 0, andα < 0. If α = 0 then at leading order we have

∑i−1
k=0A

(k)

n,0c
k = 0,

which hasi − 1 solutions forc if i > 1 and no solutions ifi = 1. If α > 0 then
A
(m)

n,0c
m+1−iλ(m+1−i)α−1 − A(i−1)

n,0 = 0. This has a solution only ifα = m+ 1− i. If α < 0,

then at leading order inλ we haveA(0)n,0 = 0, which has no solution. �

We determine the value ofE by solving for a root of (6) using an iterative numerical
algorithm. In practice, to ensure convergence to the particular branch of interest, we begin
with an estimate of the desired result obtained from some other method as the initial guess
for the root.

4. A simple example of a multiple-valued function

Consider the infinite-valued functionF(λ) = λ−1[ln(1+λ)+2πK i], whereK is an integer
indicating the branch. For the principal branch,K = 0, F has the asymptotic expansion

F(λ) ∼ 1− 1
2λ+ 1

3λ
2− 1

4λ
3+ 1

5λ
4− 1

6λ
5+ · · · . (22)

It has been proved (Bender and Orszag 1978 pp 402–3) that the convergence of linear
approximants for (22) to the principal branch is geometric. We know of no such theoretical
estimates for higher-degree approximants but find numerically that the diagonal sequences
of approximants of any degree also converge geometrically, with

|F{m,n}(λ)− F(λ)| ∝
∣∣∣∣∣1− (1+ λ)(m+1)−1

exp
(

2π i
m+1

[
m+1

2

])
1− (1+ λ)(m+1)−1 exp

(
2π i
m+1K

) ∣∣∣∣∣
n

(23)

where [m+1
2 ] is the greatest integer less than or equal tom+1

2 . It follows that the approximant
sequence will converge on those branches for which|K| 6 [ m−1

2 ]. On such branches, (23)
in the limit of largem reduces to

|F{m,n} − F | ∝ [ 1
4 ln2(1+ λ)+ π2K2]n/2m−n. (24)

Thus, increasing the degreem always increases the rate of convergence in the limit of large-
ordern. However, the convergence rate is slower for largerK, corresponding to branches
that are more distant from the principal branch.

Of particular interest is the determination of the optimalm for givenn. Figure 1 shows
the accuracy againstm at given values ofn for the principal branch and for the|K| = 2
branches. In the appendix we develop the following expression for the optimalm:

m ≈ (n+ 2)1/2− 1. (25)

As shown in figure 1, this expression does in practice give very nearly the highest accuracy.
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Figure 1. Dependence of accuracy on the degreem of the algebraic approximant of ordern in
the diagonal staircase sequence for the functionF(λ) = λ−1[ln(1+λ)+2π iK] on the branches
K = 0 andK = ±2 atλ = 1. The optimalm for givenn is indicated by a circle. The predicted
optimalm, according to (25) is indicated by a star. The measure of accuracy is− lg |F{m,n}−F |,
which is roughly equal to the number of correct digits after the decimal point.

5. Anharmonic oscillators

5.1. Quartic oscillator

We have computed the exact asymptotic expansion coefficients for the ground-state energy
of the quartic oscillator through 600th order using a linear algebraic method (Vaı̆nberget al
1988, Dunnet al 1994). The coefficients are rational numbers. Calculations of diagonal
staircase approximant sequences were carried out with Mathematica (Wolfram 1991) in
multiple-precision arithmetic (5000 digits), because the recursive algorithm is numerically
unstable. The accuracy ofE{m,n} for variousλ is shown in figures 2–4.

Figure 2 shows the convergence atλ = 1
2 for the principal branch ofE(λ), which

corresponds to the ground-state energy. The 20th degree approximant sequence appears to
converge to 80 decimal digits, which, incidently, surpasses the highest accuracy previously
reported for this result, obtained by Meißner and Steinborn (1997) from an iterative
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Figure 2. Accuracy of diagonal staircase approximant sequencesE{m,n} for the ground-state
energy of the quartic oscillator atλ = 1

2 . n is the order of the perturbation expansion whilem
is the approximant degree. The measure of accuracy is− lg |E{m,n} − E|.

calculation. At largen we find that ln|E{m,n} −E| ∼ −nα, with the parameterα increasing
with m. For m = 1 we find numerically thatα = 0.50, which is the same convergence
as linear approximants for the simple Stieltjes series

∑
(−λ)nn! (Bender and Orszag 1978

pp 404–5). Form = 2, 3, 4, and 20, respectively, we findα = 0.59, 0.67, 0.68, and 0.69.
Figure 3 compares the convergence for differentλ on the circle|λ| = 1

2. The curves
here are polynomial fits, which suppress the relatively small fluctuations around regular
trends. Convergence atλ = i/2 is similar to that atλ = 1

2, but the accuracy is slightly
poorer. (The physical meaning of imaginary coupling constants will be discussed below.)
At λ = − 1

2 the potential does not support bound states. Linear approximants no longer
converge, but quadratic and, especially, cubic and higher-degree approximants converge
fairly well to a complex energy corresponding to a quasistationary state. Using the scaling
transformation of the variablex = x ′ exp(−π i/4) in the Hamiltonian (1), withβ = 4, one
can prove (Crutchfield 1978, Seznec and Zinn-Justin 1978) thatλ = exp( 3

2iπ)λ′ corresponds
to a double-well problem

H ′ = 1
2p

2− 1
2x
′2+ λ′x ′4 (26)

with eigenvaluesE′(λ′) = −iE(λ). These lie on the second sheet of Riemann surface. The
bottom panel of figure 3 corresponds to this branch, withλ′ = 1

2.
Figure 4 shows the accuracy of results forλ′ = 1

10 andλ′ = 3
100. Convergence improves

significantly with increasing degreem of the approximant sequences, especially for smaller
λ′. We attribute this to the presence on this sheet of the infinite sequence of square-root
branch-point pairs, identified by Bender and Wu (1969). The positions of these branch
points are shown in figure 5. The closerλ is to these points, the greater is the advantage of
increasing the degree of the approximants.λ′ = 3

100 corresponds to aλ deep in the heart of
the branch-point region. We find that approximants with degree less than 4 do not converge
at all at this point while the 20th degree approximants show slow but steady convergence
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Figure 3. Accuracy of diagonal staircase approximant sequencesE{m,n} for the ground-state
energy of the quartic anharmonic oscillator at differentλ on the complex circle|λ| = 1

2 . The
curves have been smoothed by fitting with a polynomial. The approximant degree is indicated
as follows:m = 1, · · · · · ·; m = 2, – – –;m = 3, — · —; m = 4, — · · —; m = 20, ——. The
measure of accuracy is− lg |E{m,n} − E|. (The vertical scale is different for differentλ.)

to a pure imaginary energy,

E( 3
100e3iπ/2) = iE′(λ′) = −1.411 819 732 54i (27)

which corresponds to the ground-state energy in the double well. Moreover, another
branch of the degree 20 approximants converges (at very high order) to−0.312 1621i,
which corresponds to the energy of the second excited state in the double well. These
two branches meet at the branch cut between the first branch points of the sequence,
±0.031 9934− 0.036 7596i.

The principal branch of the functionE(λ) at λ = −iλ′ corresponds to the complex
energy of the barrier resonance in the double well,Er

DW(λ
′) = −iE(−iλ′). The small-

coupling expansion

Er
DW(λ

′) = −i

2
+ 3

4
λ′ − 21

8
iλ′2+ 333

16
iλ′3+ · · · (28)

represents a formal Rayleigh–Schrödinger perturbation series for the anharmonic oscillator
1
2ω

2x2 + λ′x4 with an imaginary frequencyω = −i. A similar perturbation theory for
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Figure 4. Accuracy of diagonal staircase approximant sequencesE{m,n} for the ground-state
energy of the quartic anharmonic oscillator at various values ofλ. The curves are smoothed by
polynomial fits. The approximant degree is indicated by curve type as in figure 3. In the bottom
two panels approximants that have correct large-λ cube-root behaviour are marked by crosses.

resonances was recently used by Fernández (1996). Such broad resonances with the real part
of the energy near the potential maximum are associated with chemical reaction thresholds
(Friedmanet al 1995).

The caseλ = − 1
1000 shown in figure 6 corresponds to a quasistationary state with

extremely small width,=E ≈ ±4.319× 10−144. The linear approximants are all pure real.
Their error decreases withn until it becomes approximately equal to|=E| and then it holds
steady at that level. This level of accuracy is eventually reached also by partial summation,
just before the divergence sets in. Approximants withm > 2 are real at lown, and their
accuracy stalls at the same level as form = 1, but at largen, once an imaginary part appears,
the accuracy increases rapidly. This behaviour is qualitatively similar to that observed in a
study of molecular resonances with two degrees of freedom using quadratic approximants
(Suvernev and Goodson 1997).

The casesλ = 100 andλ = 106 displayed at the bottom of figure 4 correspond to a
strong-coupling region, in whichE(λ) ∼ b0λ

1/3 (Turbiner and Ushveridze 1988, Guardiola
et al 1992). Since linear and quadratic approximants cannot accurately model cube-root
singularities, their convergence is very slow. Convergence of approximants withm > 2 is
much better. The 20th degree approximants of the form [j, j, . . . , j, j − 1, j − 1, j − 1]
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Figure 5. Diagram of analytic structure ofE(λ) for the quartic oscillator on the second sheet
of the Riemann surface corresponding to the branch cut(0,∞), showing pairs of square root
branch points with limit point at the origin (Shanley 1986).

100 200 300 400 500 600

n

100

140

180

80

120

160

200

N
um

be
r 

of
 c

or
re

ct
 d

ig
it

s

m = 1

m
 =

 2

m
 =

 3

partial sum
s

E =  0.499 247 353 942 564 612 176 992 976 970 895 585 635 911
           688 400 052 130 050 984 015 716 987 239 882 118 796 441
           573 355 561 819 616 521 232 323 058 494 896 247 458 966
           530 029 176 355 793 470 555 581 324 825 569 201 270 802
           797 431 009 363 710 387 201 227 758 749 266 245

       -4.319 019 855 233 705 587 517 917 780 524 152 145  

           050 709 382 117 868 569 320 552 5.10-144 i

λ = −1 1000/

m
 =

 3

m
 =

 1

Figure 6. Accuracy of diagonal staircase approximant sequencesE{m,n} and of partial sums for
a very long-lived quasistationary state of the quartic oscillator. Accuracy of approximants with
m > 3 is indistinguishable from that of cubic approximants within the scale of the figure.

(n = 21j + 16) are marked by crosses. Their accuracy is significantly higher than the
overall accuracy of the 20th degree approximants (full curve) because they always have
correctλ1/3 behaviour at largeλ, according to the theorem in section 3.
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Apart from dependence of the accuracy onn, we have also studied the dependence on
m, that is, the convergence along rows in table 1. The behaviour is qualitatively the same
as that in figure 1. The condition (25) gives nearly optimal convergence.

5.2. Cubic oscillator

The harmonic oscillator with cubic perturbation,H = 1
2p

2 + 1
2x

2 + gx3, is a prototypical
system exhibiting resonances. Its complex eigenvalues have been studied numerically
(Drummond 1981) and analytically (Alvarez 1988, 1995). One can expect in general that
harmonic oscillators with polynomial perturbations of any degree greater than 2 will have an
infinite sequence of square-root branch points approaching the origin, and therefore should
benefit from the use of high-degree approximants.

Since odd-order terms of the energy series ing are zero (because the energy is
an even function ofg), we define the perturbation parameter asλ = g2 and analyse
the seriesE(λ) ∼ 1

2 − 11
8 λ − 465

32 λ
2 − · · ·, which has non-zero terms at every order.

Convergence of the algebraic approximants forλ = 1
4 (i.e. g = 1

2), λ = 1
4 exp(5iπ/2),

andλ = 100 is shown in figure 7. The convergence behaviour is quite similar to that for
the quartic oscillator. However, for the quartic oscillator, which has a cube-root branch
structure, there was significant improvement from increasingm up to 3 and more modest
improvement form > 3. For the cubic oscillator, with a fifth-root structure (Alvarez
1995), there is a greater advantage from increasingm above 3. This is especially true
for the large-λ case, shown in the bottom panel, where the asymptoticλ1/5 behaviour
becomes dominant inE(λ). For them = 20 case the accuracy of approximants of the
form [j, . . . , j, j − 1, j − 1, j − 1, j − 1, j − 1] is marked by crosses. Their accuracy is
consistently higher than the average accuracy of theE{20,n}, as expected from the theorem
in section 3.

Using the scaling transformationx = ω1/2x ′, one can prove thatωE(ω−5λ) is an
eigenvalue in a potentialω2x2/2+ λ1/2x3. In particular, forω = exp(−π i/2), the value
−iE(e

5
2 iπλ) is an eigenvalue in a potential−x2/2+λ1/2x3. A shift transformation transforms

this modified potential back to the original potential,

− 1
2x

2+ λ1/2x3 = 1
2x
′2+ λ1/2x ′3− 1/(54λ) (29)

wherex ′ = x+1/(3λ1/2), which implies that the eigenvaluesE(λ) in the original potential
can be expressed in terms of the new eigenvalues according to

E(λ) = −iE(λ′)+ 1/(54λ) (30)

whereλ′ = exp( 5
2iπ)λ. The pointλ′ lies on the second sheet of the Riemann surface under

the cut(0,∞). E(λ′) can be expressed asE′(iλ) whereE′ represents the second branch
of the functionE. Thus, the eigenvalues can be calculated either by direct summation of
the seriesE(λ) on the principal sheet or by summing the expansion forE′ on its second
sheet. The latter approach is equivalent to expanding the potential−x2/2+ λ1/2x3 at its
local maximum and then developing a complex perturbation theory for an upturned oscillator
with pure imaginary frequency with summation of the energy expansion on the second sheet.
As shown in the second panel of figure 7, this indirect approach does indeed converge to
the same result as the direct approach, and it benefits even more strongly from the use of
high-degree approximants, although the rate of convergence appears to always be less than
that of the direct analysis.
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Figure 7. Accuracy of diagonal staircase approximant sequencesE{m,n} for the ground state
energy of the cubic anharmonic oscillator at different values ofλ. The curves are smoothed by
polynomial fits. The approximant degree is indicated by curve type as in figure 3. The energy
at λ = 1

4 exp( 5
2 iπ) is closely related to the energy atλ = 1

4 according to (30). In the bottom
panel approximants that have correct large-λ fifth-root behaviour are marked by crosses.

5.3. Sextic and octic oscillators

Perturbation theory for sextic (λx6) and octic (λx8) anharmonic oscillators is very strongly
divergent—theEn grow as(2n)! and (3n)!, respectively. Linear approximants converge
very slowly for the sextic oscillator even at smallλ and fail to converge at all for the octic
oscillator (Graffi and Grecchi 1978). Figure 8 shows that increasing the approximant degree
for the sextic oscillator considerably improves the convergence rate.

The problem of the octic oscillator is particularly interesting because the [j, j ] and
[j + 1, j ] sequences of linear approximants converge to different limits, giving lower and
upper bounds to the true energy (Austin 1984). We find that higher-degree approximants
of a given index pattern also converge to an incorrect result but the number of digits of
agreement with the correct result is considerably greater than that for linear approximants.
This behaviour is shown in figure 9 for diagonal quadratic and cubic approximants. The
accuracy obtained both for the sextic and for the octic oscillator exceeds the accuracy
obtained by Wenigeret al (1993) using a nonlinear transformation of a renormalized series.
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Figure 8. Accuracy of diagonal staircase approximant sequencesE{m,n} for the ground state
energy of the sextic oscillator atλ = 1
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Figure 9. Accuracy of diagonal approximantsE[j,j,...,j ] for the ground state energy of the octic
oscillator atλ = 1

100, with approximant degreem as indicated. The linear approximants converge
to 0.5272 (99.1% of the exact energy), the quadratic approximants converge to 0.532 105
(100.0002%), and the cubic approximants converge to 0.532 103 926 (99.999 9997%). The
‘exact’ energy for this system was calculated by numerical integration of the differential equation.

6. Conclusions

We have demonstrated that algebraic approximants of degreem > 3 can be very effective
for summing perturbation series for quantum oscillators, both on the principal sheet and on
nearby sheets of the Riemann surface. These approximants can reproduce several sheets
of a multiple-valued function starting from the Taylor expansion of the function on the



Algebraic approximants 4315

principal sheet. The eigenvalues of a given symmetry are branches of a single multiple-
valued function and the branch points form a sequence with the limit point at the origin.
Similar singularity structure has also been identified for other kinds of potentials, including
the angular spheroidal wave equation (Hunter and Guerrieri 1982), the two-centre Coulomb
problem (Grozdanov and Solov’ev 1990), and analytically solvable models (Benderet al
1974, Ushveridze 1988). To the extent that such structure is typical of quantum mechanical
eigenvalues, we expect that algebraic approximants will be useful as a general summation
method for perturbation theories of the Schrödinger equation.

We expect that the accuracy of our results could be improved by applying the
approximants to expansions calculated from renormalized Hamiltonians (Killingbeck 1981,
Artecaet al 1990 pp 126–31, Vinette anďCı́žek 1991, Wenigeret al 1993). For example,
Weniger (1996) obtained an accuracy of 46 digits from 198th order perturbation theory for
the ground-state energy of the quartic oscillator withλ = 1

2, using a sequence transformation
to sum a renormalized expansion. This rate of convergence is somewhat better than that
reported here in figure 3.

A limitation of algebraic approximants is that in practice the number of expansion
coefficients needed for a given degree is approximately equal to the square of the degree.
Therefore, approximants of very high degree will be most useful for problems with few
degrees of freedom, for which the perturbation theory can be computed to very high order.
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Appendix. Predicting the optimal degree

The defining relation for algebraic approximants of the functionE(λ), which we have
written in (7) as a polynomial inE, can also be thought of as a polynomial equation in
terms ofλ. Thus, if we substitute the explicit expression

∑pk
i=0 ak,iλ

i for A(k), then we can
write (7) in the form

q∑
i=0

B(i)(E)λi = O(λn+1) (A1)

in terms of a set of polynomialsB(i), with q = [(n + 1)/(m + 1)]. It follows that
(7) simultaneously defines an algebraic approximant of degreem for E(λ) and algebraic
approximant of degreeq for the inverse functionλ(E).

In principle, if E(λ) has an infinite number of branches then we can expect that
the accuracy of the approximantE{m,n} will increase withm. However, the error in the
approximantE{m,n} is related to the error in the approximantλ{q,n}. Let

δE = E(λs)− E{m,n}(λs) δλ = λ(Es)− λ{q,n}(Es) (A2)

whereλs is the point at whichE is being summed andEs = E(λs). ThenE{m,n}(λs) =
E{m,n}(λ(Es)+ δλ). Assuming thatδλ is small, it follows that

E{m,n}(λs) ≈ Es + δλdE{m,n}
dλ

≈ Es + δλdE

dλ
(A3)
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which implies thatδE is proportional toδλ. Let us assume thatλ(E) is a multiple-valued
function. (This is true for our model functionx−1 ln(1+ x).) Then we can expect that the
accuracy of the approximantsλ{q,n} will increase withq. However,q decreases withm.
This implies that the accuracy ofE{m,n} will decreasewith m.

Thus, we needm somewhat large, to model the singularity structure ofE(λ), but we
also needq somewhat large, to model the singularity structure ofλ(E). Based on these
arguments, we conjecture that the optimal approximant degree will correspond tom ≈ q,
from which (25) follows.
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Văınberg V M, Mur V D, Popov V S and Sergeev A V 1986Pis. Zh. Eksp. Teor. Fiz.44 9–12 (Engl. transl. 1986

JETP Lett.44 9–13)
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