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1. Introduction

The Schr�odinger equation H = E , where

H = 1
2
p2 + 1

2
x2 + �x�; (1)

gives rise to a well-known example of singular perturbation theory (Bender and Orszag

1978). This problem is of physical interest, as a prototypical quantum �eld theory and

as a model for molecular vibrations, and of mathematical interest, on account of the

rich singularity structure of the function E(�). A characteristic feature of E(�) is an

in�nite sequence of branch points approaching a limit point at � = 0. (Bender and Wu

1969, Simon 1970, Shanley 1986, Alvarez 1995, Bender and Orszag 1978 p 350-61). The

asymptotic expansions for the energy, E(�) �
P

1

n=0 En�
n, are therefore divergent for all

�. These expansions have become a standard test case for new summation procedures

(Reid 1967, Gra� et al 1970, Seznec and Zinn-Justin 1979, Caswell 1979, Dmitrieva and

Plindov 1980, Drummond 1981, �C���zek and Vrscay 1982, Cohen and Kais 1986, Weniger

et al 1993), in part because the En can be easily computed even for extremely large n.

The multiple-valued nature of E(�) causes trouble for summation approximants that

are single valued. Consider for example the quartic oscillator, � = 4. It can be proved

in that case (Loe�el et al 1969) that E(�) is Pad�e summable as long as j arg �j < �.

In practice, the approximants place a sequence of poles along the negative real axis,

simulating a branch cut (Baker 1975). The convergence slows as j arg �j approaches �

and fails completely at �. If � is pure real and negative then the eigenvalue corresponds

to a double-valued complex resonance energy, E = Er� i�=2, where � can be identi�ed,

at least approximately, with the resonance width (Connor and Smith 1981). The plus

and minus signs correspond to the incoming and outgoing wave boundary conditions

respectively. Since the En are real the Pad�e approximants for negative real � are also

real, and cannot converge to the correct result.

The Pad�e approximant E[L;M ](�) is a rational function PL(�)=QM (�) that is

asymptotically equal to the expansion of E(�). PL and QM are polynomials of degree

L and M respectively that satisfy the linear equation

P (�) �Q(�)E(�) = O(�
L+M+1): (2)

\E(�)" in (2) represents the power series in �. A natural generalization for double-valued

functions is a quadratic Pad�e approximant (Shafer 1974). The [L;M;N ] quadratic

approximant is a function of 3 polynomials A, B and C, of degree L, M and N ,

respectively, that satisfy

A(�) +B(�)E(�) + C(�)E2(�) = O(�
L+M+N+2): (3)

The approximant E[L;M;N ](�) is obtained by solving the quadratic equation

A(�) +B(�)E[L;M;N ](�) + C(�)E2
[L;M;N ](�) = 0: (4)
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Convergence theorems for these approximants exist for certain special cases (Baker

and Graves-Morris 1996 pp 544{569), but in practice applicability to functions of

physical interest has been justi�ed numerically (Short 1979, Jeziorski et al 1980, Liu and

Bergersen 1981, Common 1982, Mayer and Tong 1985, Va��nberg et al 1986, De'Bell 1992,

Goodson et al 1992, Hamer et al 1992, Germann and Kais 1993). These approximants

do not need to simulate the branch cut with poles; they explicitly contain square-root

branch points. For the quartic oscillator they converge at negative real � (Sergeev 1995).

In the same spirit, an algebraic approximant of arbitrary degree m (Short 1979,

Brak and Guttmann 1990) can be de�ned by the equation

mX
k=0

A(k)(�)Ek
[p0;p1;:::;pk]

(�) = 0; (5)

where A(k)(�) are polynomials in � of degree pk that satisfy

mX
k=0

A(k)(�)Ek(�) = O(�
n+1); n = m� 1 +

mX
k=0

pk: (6)

This is a special case of a class of summation schemes known collectively as Pad�e-Hermite

approximation (Hermite 1893, Pad�e 1894, Della Dora and Di Crescenzo 1979, Baker and

Graves-Morris 1996 pp 524-69). We will use high-degree algebraic approximants to sum

the expansion of the multiple-valued oscillator eigenvalue.

The paper of Short (1979) is the closest prototype of the present study. There,

similar multiple-valued approximants were constructed so as to incorporate the known

branch-point structure of Feynman matrix elements. For the multiple-valued function

ln(1� z), Short observed that quadratic approximants reduce the error by roughly two

orders of magnitude compared with Pad�e approximants. He found similar improvement

in accuracy for quadratic and especially cubic approximants for certain Feynman

integrals and found that these approximants provide, in e�ect, analytic continuations

of the asymptotic expansion from the �rst Riemann sheet to the second.

Here we present a further demonstration of the power of algebraic approximants

to describe functions with complicated branch-point structure. We �nd that the

convergence for the ground-state energy of anharmonic oscillators improves with

approximant degree, given enough terms in the expansion. High-degree approximants

yield very high accuracy for the principal value of E(�) and reasonably good results

on higher sheets. Certain choices of the approximant indices give the known large-�

singularity structure, and the corresponding numerical results are especially accurate.

Section 2 presents an e�cient algorithm for computing algebraic approximants. In

section 3 we analyze the singularity structure of the approximants and in section 4, as

a simple demonstration, we determine the rate of convergence for the in�nite-valued

function ��1 ln(1 + �). Section 5 contains results for quartic, cubic, sextic, and octic

oscillators.
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2. Computational algorithm

The most direct method for calculating algebraic approximants is to solve the system of

n+1 linear homogeneous equations for the coe�cients of the polynomials A(0), A(1),: : : ,

A(m), that follows from (6) after collecting terms by powers of � (Della Dora and Di

Crescenzo 1979). This approach is appropriate for low-order analyses, but the number

of arithmetic operations increases very rapidly with increasing n.

For the conventional \linear" Pad�e approximants (m = 1) the [L;M ] approximants

with L � M tend in general to be the most accurate (Baker 1975). Our experience is

that quadratic and higher-degree approximants with approximately equal indexes are

also the most accurate. Here we present an algorithm for computing such approximants

that is much faster and needs much less computer memory at large orders than solving

the system of linear equations. It yields what we will call the diagonal staircase sequence

of degree-m approximants, Efm;ng(�), n = m� 1;m;m+ 1;m+ 2; : : :, with

fm;ng �
h
j; j; :::; j| {z }

i

; j � 1; j � 1; :::; j � 1| {z }
m+ 1 � i

i
;

(7)

where j satis�es the equation (m+ 1)j = n � i+ 2 with 1 � i � m+ 1. Table 1 lists

representative examples of the index sequences, illustrating the correspondence between

fm;ng and [p0; : : : ; pm].

Table 1. Indices of approximants that comprise the diagonal staircase sequences. m is

the degree of the approximant and n is the highest order in the asymptotic expansion

that is needed in the calculation. The entries [p0; p1; : : : ; pm] give the degrees of the

constituent polynomials.

n m = 1 m = 2 m = 3 m = 4

0 [0; 0]

1 [1; 0] [0; 0; 0]

2 [1; 1] [1; 0; 0] [0; 0; 0; 0]

3 [2; 1] [1; 1; 0] [1; 0; 0; 0] [0; 0; 0; 0;0]

4 [2; 2] [1; 1; 1] [1; 1; 0; 0] [1; 0; 0; 0;0]

5 [3; 2] [2; 1; 1] [1; 1; 1; 0] [1; 1; 0; 0;0]
...

...
...

...
...

50 [25; 25] [17; 16; 16] [12; 12; 12;12] [10; 10; 9; 9;9]

Our algorithm is an extension to arbitrary degree of the Berlekamp-Massey

algorithm (Baker and Graves-Morris pp 153-66). It was used previously by Mayer

and Tong (1985) for calculating quadratic approximants and is a special case of a more

general algorithm, for Pad�e-Hermite approximants, derived by Sergeev (1986). Let
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Rn(�) be a sequence of residual functions,

Rn(�) =
1X
i=0

rn;i�
i; (8)

such that
mX
k=0

A(k)
n Ek(�) = �n+1Rn(�): (9)

Note that we have added the subscript n to A(k) in order to indicate which Efm;ng it

corresponds to in the diagonal staircase sequence. We will assume that rn;0 6= 0 for all

n.

The lowest-order approximant of degree m will have each A(k)
n (�) equal to a

constant. Any solution for the set fA(0)
n ; A(1)

n ; : : : ; A(m)
n g can be multiplied by a

common factor. Thus, one of these constants is arbitrary. The remaining m constants

are determined from the accuracy-through-order conditions, (6). The lowest-order

approximant corresponds to n = m � 1, so that there can be m such conditions.

The solution for this approximant is A
(k)
m�1(�) =

�
m

k

�
(�E0)

m�k, as can be veri�ed

by substitution into (9). It follows that

�mRm�1(�) = [E(�)� E0]
m: (10)

If n < m � 1 then the resulting approximant cannot be of degree m. However, if we

de�ne

A(k)
n (�) =

8><
>:
0; k > n+ 1,�
n+ 1

k

�
(�E0)

n+1�k; k � m� j
; (11)

for n = �1; 0; 1; : : : ;m� 1, then (9) will be satis�ed for all n � 0, with

�n+1Rn(�) = [E(�)�E0]
n+1: (12)

Let fcn;1; cn;2; : : : ; cn;mg be a set of constants such that

Rn�m�1(�) +
mX
j=1

cn;j�
j�1Rn�m�1+j (�) = O(�

m); (13)

where the Rk are residuals of degree-m approximants according to (9). Then the

constituent polynomials of the diagonal approximant sequence satisfy the recursion

A(k)
n (�) = �A

(k)
n�m�1(�) +

mX
j=1

cn;jA
(k)
n�m�1+j(�) (14)

for n � m, with A(k)
n at n < m given by and (11), and the corresponding residuals

satisfy

�mRn(�) = Rn�m�1(�) +
mX
j=1

cn;j�
j�1Rn�m�1+j (�); (15)
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with Rn at n < m given by (12). These equations are easily veri�ed by substituting

(14) into (9), giving

mX
k=0

A(k)
n (�)Ek(�) = �n�m+1Rn�m+1(�) +

mX
j=1

cn;j�
n�m+jRn�m�1+j (�); (16)

which according to (13) goes to zero asymptotically as O(�
n+1). Thus, (14) satis�es the

accuracy-through-order condition. Comparison with (9) establishes (15).

Collecting terms in (13) according to order in � gives the set of equations

rn�m�1;k�1 +
kX

j=1

cn;jrn�m�1+j;k�j = 0; (17)

corresponding to k = 1; 2; : : : ;m. These can be solved recursively for the cn;j starting

with cn;1 = �rn�m�1;0=rn�m;0. Thus, we can calculate the set of cm;j from the residuals

given by (12). Substituting the cm;j into (14) and (15) gives the A(k)
m and Rm. The

coe�cients of Rm can then be used in (17) to calculate the cm+1;j, and so on.

Alternative recursive calculation of A(k)
n and Rn (Sergeev 1986) is as follows. First,

de�ne subsidiary polynomials a
(k)
0 (k = 0; 1; :::;m) and a subsidiary remainder function

r0 as

a
(k)
0 (�) = �A

(k)
n�m�1(�); (18)

r0(�) = Rn�m�1(�): (19)

Second, de�ne subsequently for p = 1; 2; :::;m another subsidiary polynomials and

remainder functions as

a(k)p (�) = a
(k)
p�1(�) + cn;pA

(k)
n�m+p�1(�); (20)

rp(�) = ��1[rp�1(�) + cn;pRn�m+p�1(�)]; (21)

where

cn;p = �rp�1(0)=Rn�m+p�1(0): (22)

And third, calculate

A(k)
n (�) = a(k)m (�); (23)

Rn(�) = rm(�): (24)

Equations (18) { (24) are very feasible for computer programming. Note that the

constants de�ned by (13) are the same as in (22),

a(k)p (�) = �A
(k)
n�m�1(�) +

pX
j=1

cn;jA
(k)
n�m�1+j(�); (25)

�prp(�) = Rn�m�1(�) +
pX

j=1

cn;j�
j�1Rn�m�1+j (�): (26)
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Note also, that polynomials A(k)
n generated by this algorithm are normalized so that the

leading-order coe�cient in a polynomial A(i�1)
n (i. e. a coe�cient before �j) equals to

one where i and j are de�ned by (7).

3. Branches of the approximants

Consider the diagonal approximant sequence Efm;ng(�), as de�ned in section 2. These

approximants can have as many as m branches, corresponding to the m roots of (5).

Let us determine the asymptotic behavior of these branches at �! 0 and at �!1.

It follows from (5) that Efm;ng(0) is a root of a polynomial P(Efm;ng) =Pm
k=0A

(k)
n (0)Ek

fm;ng. (We do not consider here the case of a multiple root, when Efm;ng(0)

is also a root of dP=dEfm;ng, which may occur accidentally but is rare in practice.)

According to a theorem of Baker (Baker and Graves-Morris 1995, pp 534{5) the root

of equation (5) for which Efm;ng(0) is equal to E(0) di�ers from
P

1

i=0Ei�
i by an error

that is at worst O(�n+1). We call this root the principal branch and call the sheet of the

Riemann surface on which it approximates the function the principal sheet. In general,

for all other branches the �! 0 limit of the approximant will not be equal to the �! 0

limit of the asymptotic expansion
P

1

n=0 En�
n. However, these approximants can, at

least in principle, describe the function E(�) on other sheets.

The large-� behavior is described by the following theorem.

Theorem: Let i be the index de�ned in (7) that describes the pattern of the degrees of

the A(k)
n . In the limit �! 1, i� 1 branches of Efm;ng(�) tend to constants, while the

remaining m+ 1 � i branches behave as �1=(m+1�i).

Proof: In the limit �!1 the asymptotic behavior of Efm;ng(�) is given by the equation

i�1X
k=0

A
(k)
n;0E

k
fm;ng(�) +

1

�

mX
k=i

A
(k)
n;0E

k
fm;ng(�) = 0; (27)

where A
(k)
n;0 are the leading-order (i.e. �

j or �j�1 according to (7)) coe�cients of A(k)
n (�).

Assume that Efm;ng(�) � c��, where c and � are constants. We consider 3 possibilities:

� = 0, � > 0, and � < 0. If � = 0 then at leading order we have
Pi�1

k=0A
(k)
n;0c

k = 0,

which has i � 1 solutions for c if i > 1 and no solutions if i = 1. If � > 0 then

A
(m)
n;0 c

m+1�i�(m+1�i)��1�A
(i�1)
n;0 = 0. This has a solution only if � = m+1� i. If � < 0,

then at leading order in � we have A
(0)
n;0 = 0, which has no solution.

4. A simple example of a multiple-valued function

Consider the in�nite-valued function F (�) = ��1[ln(1 + �) + 2�Ki], where K is an

integer indicating the branch. For the principal branch, K = 0, F has the asymptotic
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expansion

F (�) � 1� 1
2
�+ 1

3
�2 � 1

4
�3 + 1

5
�4 � 1

6
�5 + � � � : (28)

It has been proved (Bender and Orszag 1978 pp 402-3) that the convergence of linear

approximants for (26) to the principal branch is geometric. We know of no such

theoretical estimates for higher-degree approximants but �nd numerically that the

diagonal sequences of approximants of any degree also converge geometrically, with

���Ffm;ng(�) � F (�)
��� /

��������
1 � (1 + �)(m+1)�1 exp

�
2�i
m+1

�
m+1
2

��

1 � (1 + �)(m+1)�1 exp
�

2�i
m+1

K
�

��������

n

; (29)

where
h
m+1
2

i
is the greatest integer less than or equal to m+1

2
. It follows that the

approximant sequence will converge on those branches for which jKj �
h
m�1
2

i
. On such

branches, (27) in the limit of large m reduces to
���Ffm;ng � F

��� / h
1

4
ln2(1 + �) + �2K2

in=2
m�n: (30)

Thus, increasing the degree m always increases the rate of convergence in the limit of

large order n. However, the convergence rate is slower for larger K, corresponding to

branches that are more distant from the principal branch.

Of particular interest is the determination of the optimal m for given n. Figure 1

shows the accuracy vs m at given values of n for the principal branch and for the jKj = 2

branches. In the Appendix we develop the following expression for the optimal m:

m � (n+ 2)1=2 � 1: (31)

As shown in �gure 1, this expression does in practice give very nearly the highest

accuracy.

5. Anharmonic oscillators

5.1. Quartic oscillator

We have computed the exact asymptotic expansion coe�cients for the ground-state

energy of the quartic oscillator through 600th order using a linear algebraic method

(Va��nberg et al 1988, Dunn et al 1994). The coe�cients are rational numbers.

Calculations of diagonal staircase approximant sequences were carried out with

Mathematica (Wolfram 1991) in multiple-precision arithmetic (5000 digits), because

the recursive algorithm is numerically unstable. The accuracy of Efm;ng for various � is

shown in �gures 2{4.

Figure 2 shows the convergence at � = 1=2 for the principal branch of E(�), which

corresponds to the ground-state energy. The 20th-degree approximant sequence appears
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to converge to 80 decimal digits, which far surpasses the accuracy reported previously

(Mei�ner and Steinborn 1997). At large n we �nd that ln jEfm;ng�Ej � �n�, with the

parameter � increasing with m. For m = 1 we �nd numerically that � = 0:50, which

is the same convergence as linear approximants for the simple Stieltjes series
P
(��)nn!

(Bender and Orszag 1978 pp. 404-5). For m = 2, 3, 4, and 20, respectively, we �nd

� = 0:59, 0.67, 0.68, and 0.69.

Figure 3 compares the convergence for di�erent � on the circle j�j = 1=2. The

curves here are polynomial �ts, which supress the relatively small 
uctuations around

regular trends. Convergence at � = i=2 is similar to that at � = 1=2, but the accuracy is

slightly poorer. (The physical meaning of imaginary coupling constants will be discussed

below.) At � = �1=2 the potential does not support bound states. Linear approximants

no longer converge, but quadratic and, especially, cubic and higher-degree approximants

converge fairly well to a complex energy corresponding to a quasi-stationary state.

Using the scaling transformation of the variable x = x0 exp(��i=4) in the Hamiltonian

(1), with � = 4, one can prove (Crutch�eld 1978, Seznec and Zinn-Justin 1978) that

� = exp(3
2
i�)�0 corresponds to a double-well problem

H 0 = 1
2
p2 � 1

2
x02 + �0x04; (32)

with eigenvalues E0(�0) = �iE(�). These lie on the second sheet of Riemann surface.

The bottom panel of �gure 3 corresponds to this branch, with �0 = 1=2.

Figure 4 shows the accuracy of results for �0 = 1=10 and �0 = 3=100. Convergence

improves signi�cantly with increasing degreem of the approximant sequences, especially

for smaller �0. We attribute this to the presence on this sheet of the in�nite sequence of

square-root branch-point pairs, identi�ed by Bender and Wu (1969). The positions of

these branch points are shown in �gure 5. The closer � is to these points, the greater is

the advantage of increasing the degree of the approximants. �0 = 3=100 corresponds to

a � deep in the heart of the branch-point region. We �nd that approximants with degree

less than 4 do not converge at all at this point while the 20th degree approximants show

slow but steady convergence to a pure imaginary energy,

E( 3
100

e3i�=2) = iE0(�0) = �1:411 819 732 54i; (33)

which corresponds to the ground-state energy in the double well. Moreover, another

branch of the degree-20 approximants converges (at very high order) to �0:312 162 1i,

which corresponds to the energy of the second excited state in the double well. These

two branches meet at the branch cut between the �rst branch points of the sequence,

�0:0319934 � 0:0367596i.

The principal branch of the function E(�) at � = �i�0 corresponds to the complex

energy of the barrier resonance in the double well, Er
DW(�0) = �iE(�i�0). The small-
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coupling expansion

Er
DW(�0) =

�i

2
+

3

4
�0 �

21

8
i�02 +

333

16
i�03 + � � � (34)

represents a formal Rayleigh{Schr�odinger perturbation series for the anharmonic

oscillator 1
2
!2x2 + �0x4 with an imaginary frequency ! = �i. A similar perturbation

theory for resonances was recently used by Fern�andez (1996). Such broad resonances

with the real part of the energy near the potential maximumare associated with chemical

reaction thresholds (Friedman et al 1995).

The case � = �1=1000 shown in �gure 6 corresponds to a quasistationary state with

extremely small width, =E � �4:319 �10�144. The linear approximants are all pure real.

Their error decreases with n until it becomes approximately equal to j=Ej and then it

holds steady at that level. This level of accuracy is eventually reached also by partial

summation, just before the divergence sets in. Approximants with m � 2 are real at

low n, and their accuracy stalls at the same level as for m = 1, but at large n, once an

imaginary part appears, the accuracy increases rapidly. This behavior is qualitatively

similar to that observed in a study of molecular resonances with two degrees of freedom

using quadratic approximants (Suvernev and Goodson, 1997).

The cases � = 100 and � = 106 displayed at the bottom of �gure 4 correspond

to a strong-coupling region, in which E(�) � b0�
1=3 (Turbiner and Ushveridze 1988,

Guardiola et al 1992). Since linear and quadratic approximants cannot accurately model

cube-root singularities, their convergence is very slow. Convergence of approximants

with m > 2 is much better. The 20th degree approximants of the form [j; j; :::; j; j �

1; j�1; j�1] (n = 21j+16) are marked by crosses. Their accuracy is signicantly higher

than the overall accuracy of the 20th degree approximants (solid curve) because they

always have correct �1=3 behavior at large �, according to the theorem in section 3.

Apart from dependence of the accuracy on n, we have also studied the dependence

on m, that is, the covergence along rows in table 1. The behavior is qualitatively the

same as that in �gure 1. The condition (29) gives nearly optimal convergence.

5.2. Cubic oscillator

The harmonic oscillator with cubic perturbation, H = 1
2
p2+ 1

2
x2+ gx3, is a prototypical

system exhibiting resonances. Its complex eigenvalues have been studied numerically

(Drummond 1981) and analytically (Alvarez 1988, 1995). One can expect in general

that harmonic oscillators with polynomial perturbations of any degree greater than 2

will have an in�nite sequence of square-root branch points approaching the origin, and

therefore should bene�t from the use of high-degree approximants.

Since odd-order terms of the energy series in g are zero (because the energy is

an even function of g), we de�ne the perturbation parameter as � = g2 and analyze
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the series E(�) � 1
2
� 11

8
� � 465

32
�2 � � � �, which has nonzero terms at every order.

Convergence of the algebraic approximants for � = 1=4 (i.e. g = 1=2), � = 1
4
exp(5i�=2),

and � = 100 is shown in �gure 7. The convergence behavior is quite similar to that

for the quartic oscillator. However, for the quartic oscillator, which has a cube-root

branch structure, there was signi�cant improvement from increasing m up to 3 and

more modest improvement for m > 3. For the cubic oscillator, with a �fth-root structure

(Alvarez 1995), there is a greater advantage from increasingm above 3. This is especially

true for large-� case, shown in the bottom panel, where the asymptotic �1=5 behavior

becomes dominant in E(�). For the m = 20 case the accuracy of approximants of

the form [j; : : : ; j; j � 1; j � 1; j � 1; j � 1; j � 1] is marked by crosses. Their accuracy

is consistently higher than the average accuracy of the Ef20;ng, as expected from the

theorem in section 3.

Using the scaling transformation x = !1=2x0, one can prove that !E(!�5�) is an

eigenvalue in a potential !2x2=2 + �1=2x3. In particular, for ! = exp(��i=2), the value

�iE(e
5

2
i��) is an eigenvalue in a potential �x2=2 + �1=2x3. A shift transformation

transforms this modi�ed potential back to the original potential,

�1
2
x2 + �1=2x3 = 1

2
x02 + �1=2x03 � 1=(54�); (35)

where x0 = x+1=(3�1=2), which implies that the eigenvaluesE(�) in the original potential

can be expressed in terms of the new eigenvalues according to

E(�) = �iE(�0) + 1=(54�); (36)

where �0 = exp(5
2
i�)�. The point �0 lies on the second sheet of Riemann surface under

the cut (0;1). E(�0) can be expressed as E0(i�) where E0 represents the second branch

of the function E. Thus, the eigenvalues can be calculated either by direct summation of

the series E(�) on the principal sheet or by summing the expansion for E0 on its second

sheet. The latter approach is equivalent to expanding the potential �x2=2 + �1=2x3 at

its local maximum and then developing a complex perturbation theory for an upturned

oscillator with pure imaginary frequency with summation of the energy expansion on

the second sheet. As shown in the second panel of �gure 7, this indirect approach does

indeed converge to the same result as the direct approach, and it bene�ts even more

strongly from the use of high-degree approximants, although the rate of convergence

appears to always be less than that of the direct analysis.

5.3. Sextic and octic oscillators

Perturbation theory for sextic (�x6) and octic (�x8) anharmonic oscillators is very

strongly divergent|the En grow as (2n)! and (3n)!, respectively. Linear approximants

converge very slowly for the sextic oscillator even at small � and fail to converge at all
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for the octic oscillator (Gra� and Grecchi 1978). Figure 8 shows that increasing the

approximant degree for the sextic oscillator considerably improves the convergence rate.

The problem of the octic oscillator is particularly interesting because the [j; j] and

[j + 1; j] sequences of linear approximants converge to di�erent limits, giving lower

and upper bounds to the true energy (Austin 1984). We �nd that higher-degree

approximants of a given index pattern also converge to an incorrect result but the

number of digits of agreement with the correct result is considerably greater than that

for linear approximants. This behavior is shown in �gure 9 for diagonal quadratic

and cubic approximants. The accuracy obtained both for the sextic and for the octic

oscillator exceeds the accuracy obtained by Weniger et al (1993) using a Levin transform

of a renormalized series.

6. Conclusions

We have demonstrated that algebraic approximants of degreem � 3 can be very e�ective

for summing perturbation series for quantum oscillators, both on the principal sheet and

on nearby sheets of the Riemann surface. These approximants can reproduce several

sheets of a multiple-valued function starting from the Taylor expansion of the function

on the principal sheet. The eigenvalues of a given symmetry are branches of a single

multiple-valued function and the branch points form a sequence with limit point at the

origin. Similar singularity structure has also been identi�ed for other kinds of potentials,

including the angular spheroidal wave equation (Hunter and Guerrieri 1982), the two-

center Coulomb problem (Grozdanov and Solov'ev 1990), and analytically solvable

models (Bender et al 1974, Ushveridze 1988). To the extent that such structure is

typical of quantum mechanical eigenvalues, we expect that algebraic approximants will

be useful as a general summation method for perturbation theories of the Schr�odinger

equation. A limitation of the method is that in practice the number of expansion

coe�cients needed for a given degree is approximately equal to the square of the degree.

Therefore, approximants of very high degree will be most useful for problems with few

degrees of freedom, for which the perturbation theory can be computed to very high

order.
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Appendix: Predicting the optimal degree

The de�ning relation for algebraic approximants of the function E(�), which we have

written in (6) as a polynomial in E, can also be thought of as a polynomial equation in

terms of �. Thus, if we substitute the explicit expression
Ppk

i=0 ak;i�
i for A(k), then we

can write (6) in the form

qX
i=0

B(i)(E)�i = O(�
n+1); (1)

in terms of a set of polynomials B(i), with q = [(n + 1)=(m + 1)]. It follows that (6)

simultaneously de�nes an algebraic approximant of degree m for E(�) and algebraic

approximant of degree q for the inverse function �(E).

In principle, if E(�) has an in�nite number of branches then we can expect that

the accuracy of the approximant Efm;ng will increase with m. However, the error in the

approximant Efm;ng is related to the error in the approximant �fq;ng. Let

�E = E(�s)� Efm;ng(�s); �� = �(Es)� �fq;ng(Es); (2)

where �s is the point at which E is being summed and Es = E(�s). Then Efm;ng(�s) =

Efm;ng(�(Es) + ��). Assuming that �� is small, it follows that

Efm;ng(�s) � Es + ��
dEfm;ng

d�
� Es + ��

dE

d�
; (3)

which implies that �E is proportional to ��. Let us assume that �(E) is a multiple-

valued function. (This is true for our model function x�1 ln(1+x).) Then we can expect

that the accuracy of the approximants �fq;ng will increase with q. However, q decreases

with m. This implies that the error in Efm;ng will decrease with m.

Thus, we want m somewhat large, to model the singularity structure of E(�), but

we also want q somewhat large, to model the singularity structure of �(E). Based on

these arguments, we conjecture that the optimal approximant degree will correspond to

m � q, from which (29) follows.
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Figure captions

Figure 1. Dependence of accuracy on the degree m of the algebraic approximant of

order n in the diagonal staircase sequence for the function F (�) = �
�1[ln(1+�)+2�iK]

on the branches K = 0 and K = �2 at � = 1. The optimal m for given n is indicated

by a circle. The predicted optimal m, according to (29) is indicated by a star. The

measure of accuracy is � lg jFfm;ng � F j, which is roughly equal to the number of

correct digits after the decimal point.

Figure 2. Accuracy of diagonal staircase approximant sequences Efm;ng for the

ground-state energy of the quartic oscillator at � = 1=2. n is the order of the

perturbation expansion while m is the approximant degree. The measure of accuracy

is � lg jEfm;ng �Ej.

Figure 3. Accuracy of diagonal staircase approximant sequences Efm;ng for the

ground-state energy of the quartic anharmonic oscillator at di�erent � on the complex

circle j�j = 1=2. The curves have been smoothed by �tting with a polynomial. The

approximant degree is indicated as follows: m = 1, � � � � � � ; m = 2, { { { ; m = 3,

| � | ; m = 4, | � � | ; m = 20, || . The measure of accuracy is � lg jEfm;ng�Ej.

(The vertical scale is di�erent for di�erent �.)

Figure 4. Accuracy of diagonal staircase approximant sequences Efm;ng for the

ground-state energy of the quartic anharmonic oscillator at various values of �. The

curves are smoothed by polynomial �ts. The approximant degree is indicated by curve

type as in �gure 3. In the bottom two panels approximants that have correct large-�

cube-root behavior are marked by crosses.
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Figure 5. Diagram of analytic structure of E(�) for the quartic oscillator on the

second sheet of the Riemann surface corresponding to the branch cut (0;1), showing

pairs of square-root branch points with limit point at the origin (Shanley 1986).

Figure 6. Accuracy of diagonal staircase approximant sequences Efm;ng and of partial

sums for a very long-lived quasistationary state of the quartic oscillator. Accuracy of

approximants with m > 3 is indistinguishable from that of cubic approximants within

the scale of the �gure.

Figure 7. Accuracy of diagonal staircase approximant sequences Efm;ng for the

ground-state energy of the cubic anharmonic oscillator at di�erent values of �. The

curves are smoothed by polynomial �ts. The approximant degree is indicated by curve

type as in �gure 3. The energy at � = 1
4
exp(5

2
i�) is closely related to the energy at

� = 1
4
according to (34). In the bottom panel approximants that have correct large-�

�fth-root behavior are marked by crosses.

Figure 8. Accuracy of diagonal staircase approximant sequences Efm;ng for the

ground-state energy of the sextic oscillator at � = 1=10.

Figure 9. Accuracy of diagonal approximants E[j;j;:::;j] for the ground-state energy

of the octic oscillator at � = 1=100, with approximant degree m as indicated. The

linear approximants converge to 0.5272 (99.1% of the exact energy), the quadratic

approximants converge to 0.532105 (100.0002%), and the cubic approximants converge

to 0.532103926 (99.999999 7%). The \exact" energy for this system was calculated

by numerical integration of the di�erential equation.


