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Using the imaginary time method, we study the structure of the perturbation series for the
hydrogen atom in electric & and magnetic 2# fields. It is shown that there is a “*critical”’ value
of the ratio y=_%/#" at which the perturbation series for the ground state changes from

having a fixed sign (for y< y.) to having a variable sign (for ¥>> v_}. This conclusion is confirmed
by direct higher-order perturbation calculations. The change in the asymptotic regime is
explained by competition among the contributions of the various complex trajectories that describe
the subbarrier motion of the electrons. Here the parameter y,. depends on the angle 6

between the electric and magnetic fields, © [998 American Institute of Physics.

[S1063-7761(98)01006-3]

1. The problem of the hydrogen atom in external fields is
of fundamental importance in quantum mechanics and
atomic physics and is often encountered in applications.' ™

Recently,”™ a semiclassical theory has been developed
for the 1onization of atoms and ions in constant and uniform
electric # and magnetic # fields, The imaginary time
method” "' was used to calculate the ionization probability
w{&,#), as it yields a convincing description of the subbar-
rier motion of the particles using the classical equations of
motion, but with an imaginary ““time.”* "

The ionization probability for the atomic s level with
binding energy |Eql= «%/2 is given by (A =m=¢=1. natural
units}

2
w{ &, #)=k*R(7.0) exp{—:;ﬂ'}nﬂ]J, {1
which 15 asymptotically exact in the limit of weak fields
(e.h<€1). Here e=%/x*#_ and h:.ﬁ’fxzt;?f”ﬁ are the re-
duced electric and magnetic fields, # is the angle between the
fields, #,=m?¢>/A* and F.=m-ce’lh’ are the atomic
units for the field strengths, m is the electron mass, y=h/e,

3 VB -1 L,
S’(%ﬁ')—gﬁl— v &,mﬁ—é—ﬁ cos® 8|, (2

B= 74/, 7= To{ y.0) 1s the positive root of the gquation
—sin® 8(7 coth 7— [ )7 =42, (3}

and, finally. R is a (rather compiicated) factor introduced in
Ref. 7: R=2%"¢!2"PQ7 in the notation given there. Equa-
tion (3) can be easily obtained using the imaginary time
method, where 7, has a simple physical significance: 7,=
—iwtg, where w; =|el.#/mc is the Larmor frequency and
to 15 the “*time’” (purely imaginary) for subbarrier motion of
the electron. Note that for »—0,
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sin” @ )
B=1+ T vt

while for y—«,

i

— ﬁ_—[ﬂn1 8y '+ 0(y?), O0=6<q/2,
B(y.0)= y
§{1+*y“2+...], o=ml2.
(3a)

Thus, for the funcnon g, which determines the principal (ex-
ponential) factor in the ionization probability, we obtain

g(y.0)=1+0(y"). v—Q,

]

3
o= — - 2 . -_]—1—“
gl y.6) s @ o gy

y— {3b)

{for <<#/2; for 6=7/2 the asymptote has a different form:
see Eq. (16) below). The function g(y,6) increases
mnnﬂmni:allf’ along with y {Fig. 1), so raising the mag-
netic field {at fixed &) sharply reduces the ionization prob-
ability, stabilizing the atomic level &’

Using Egs. {1}-(3) ard invoking the same considerations
as before,'”!* one can obtain the asymptotic behavijor of the
hrgher orders of perturbation theory, which is the subject of
this paper. We note that higher-order perturbation theory has
been studied for use in many quantum mechanical probiems:
the anharmonic oscillator,”®™* the Yukawa and funnel
potentials,™ % the Stark?” ** and Zeeman**~ effects in the
hydrogen atom, the molecular hydrogen jon, etc., as well as
for 1/n-expansions."”"" The problem examined below is of
interest in that the asymptotic regime undergoes a change at
a certain value of y=-y_.: the perturbation series switches
from a constant sign series to an alternating series, which is

© 1998 American Institute of Physics
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FIG. |. The function g{ ¥, &) {smoocth curves nast to which the angle iy
indicated) as a function of the parameter . The dashed curves are the values
of |g. (v 8)] for ¥=1 and 2, corresponding to the solution ot Egs. {10)-
(12}.

explained by examining a new class of complex subbarrier
trajectories besides the usual subbarrier trajectory.

The asymptotic behavior of the higher orders ot pertur-
bation theory is of interest from a general standpoint, but 18
also of practical importance for calculating the shifts of
atomic levels and their widths I'=#Aw(#£,.#}, using special
procedures for summing diverging series, such as the Borel
or Pade—-Borei summation tm:hniquezs.za'3’3"‘“"er

2. In calculating the energy levels of atoms in an electric
field /%, the standard approach is to expand the energy in a
perturbation series,

E(E)=gﬂ E, & (4)

According to Dyson's argument,”” the instability of the state
(complex energy E=E,—il/2, where [ is the levei width)
is related to the divergence of the perturbation theory series.
We shall study the behavior of the higher orders ot pertur-
bation theory in the presence of a magnetic field. To evaluate
the behavior of the perturbation coefficients £, as k—, we
use the dispersion relation?0-8-3

| E{%) I = (&)
S (e — — T d

_

E,

(here we have taken advantage of the familiar analytic prop-
erties of the function E(%), in particular its behavior on a
large circle’®: |E(&)]| (& In £)%° as £—w for the ground
state of hydrogen).

The asymptotic behavior of the higher orders of pertur-
bation theory is determined by the level width '(#) in an
arbitrarily small field, so that it is possible to use the semi-
classical Eq. (1). Equation (3) is even with respect to 7 and
has a pair of roots * 1y, for which the values of g(v,0}
differ in sign. Given this, Eqgs. {1} and (5) imply that

+(- 1)
3 Cﬂ+?+.“)1 k—*m, (6}

a=3[2eg(v, ]! (7)

(in the case of the ground state, the odd orders of the pertur-
bation expansion for the energy E(#) vanish identically). In
the following we examine only the even orders of the per-

)

E;:ﬂ’ k!ﬂtkﬁ
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turbation expansion, omitting the factor {1 +(—1)*)/2. In
particular, for the Stark effect in the hydrogen atom. we
have®

I I w07 7363
e F Y

AN T T T T B=0

(6a)

a= -,
2

{in the ground state Eg= — /2, k=vy—2E,=1).
Besides the Stark expansion {4), let us consider the ex-
pansion of the ground state energy in powers of the magnetic

field:
EZZ Ek.%k* Ek:'};"—kﬁ'k. {8}

In the case of the Zeeman effect { v—=), the higher orders of
this expansion also increase factorially:*-°

= P AL BRI R A _
Ey= (=127 =] I'lk+ 3| [1+00k™")]

(6b)
(k even), which corresponds formaily to the asymptote {6)
with a purely imaginary parameter a=a/y= + (i)' At

the same time, for ¥& 1, by virtue of Eqs. (3b) and (7), we
have

3
a=732vyg(y 8~ cos §—0,
2y

which is inconsistent with the previous result. This suggests
the existence of other solutions (i.e., complex subbarrier tra-
jectories for which the parameter @ does not vanish in the
limit of a strong magnetic field). We shall show that this 18
indeed so, by solving Eq. (3) for y—= in the complex plane.

Taking 7=i7 and y=§7y, we rewrite Eq. (3) in the form

P+sin® (1 -7 cot 7)2=7% (9)

There are two possibilities as y—e: either 7p— *iy/cos 6
(here cot m—+i) or To—*=N= for integer N¥0(cot 7
—a0). The first possibility corresponds to the real solution
considered above. In the second case we obtain

1
To=N7w+Nmsin 8- 5 '+ 5 (N)® sin 8

2 l
( 1 — = sin® H} ¥ 3 +sin H( | — == sin® ﬁ) ¥ *

+..
3 3

X

(10)

(N=12,...), with 7%, —7, and —7¥ also solutions of Eq.
(9). Introducing the function

2y
G{}’ia}:;ﬂgc(j’-ﬂ]
27 1, . 1)
_mf H--Esm 8 1 +3 cot rpl cot 74 To

(11)

and substituting Eq. (10) into it, some simple but cumber-
some calculations yield
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FIG. 2. Solutions of Eq. (9} in the complex plane for 8=30°, 60°, and 90°
{N =1). The values of the parameter v=0,2,4,... are indicated on the curves.

G(}',H)=N[ 1—2sin 6- 9!

Nm)?
{ 3) cos’ 6?) ¥ 2

4—(1=;rin1 #—
2w gl 2 2 ~-3
+ (N} smﬂgsm f—1] v

1
+(Nm)? sin’ B(—— sin® §— I)F_“

3
1 2
— (N#)? sin 6| = sin? H+{qu}2(— sin? &
3 15
Lsin® 04— 575+ 12)
~3 SIn ik e (

These expansions are valid for y—%. On the other hand, the
value of 75 at v=0 can be deiermined from the equation
cot 7,— 1/7y==1i/sin &. A numerical analysis of Eq. (9)

shows that as v increases, the point 7o=i7,(v,8) describes
the curves shown in Fig. 2 in the complex plane.

We shall mainly be interested in the case N=1, where
the function G(¥,8} has 11s munmimum absolute value. The

values of |g | =|(37/29)G(y,8)| for N=1 and 2 are shown
in Fig. 1 as the dotted curves. For suffictently large <, when
lg| < g, the asymptotic parameter g can be found from Eg.
{7} by replacing g with g .. Because of the existence of a pair
of complex conjugate solutions 7 and 7, , the asymptotes of
the higher-order perturbation theory now have the form

E~(—1)" Re(CAMKIKE,  A=ia=1372g,(7.6)],
(13)

so that the perturbation sertes 1 alternating for sufficiently
large k.

In the limit #—0 {parallel £ and .#" fields), the expan-
sion {12) terminates at the third term, so a solution can be
obtained 1n analvtic form;

(¥r)?
G(y,0}=wl—7—3., ,
0__3N-n' (N7)*
gAy.0}=i x ]+—;—3y : (14)
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The condition {g.(¥.0)]=g(7,0)=1 determines the “‘criti-
cal’’ value of v (Ref. 6):

y.=a[(1+vIP—(1+v2)"1P}71=5.270495...,
N=1I (15)

{see Appendix). For y<y,, i.e., in sufficiently strong elec-
tric fields, the dominant contribution to the asymptotic E, 1s
from the subbarrier trajectory with real 7, corresponding to
the function g{¥,0), and the perturbation series has a fixed
sign. If. however, 7y>7v,, then a.=15|g| '>a
=1.5|g| ™!, so the signs of the higher orders of perturbation
theory should alternate according to Eq. (13). Thus, at y
= . the structure of the perturbation series changes.

We have verified this by direct calculation of the pertur-
bation series coefficients E, up to k=80 (see Table I}. (For
k< 10 our calculations agree with an earlier paper®® and for
y==(), with Refs. 28—33). Some of these results are shown in
Fig. 3. It has been shown that between =3 and 3.5, the
order of the signs” of the coefficients £, does indeed
change. In addition, for y<<, the coefficients E(y) are all
of the same order of magnitude (since g(v,8)=1 and the
asymptotic parameter @ = 3/2 1s independent of ), while for
v¥> v, they begin an additional (and very rapid!) growth in
accordance with the reduction in |g ()|, which is clearly
evident in Fig. 3 {see also Eq. (A4}).

In the case considered here (=0}, the critical value of
the parameter y=h/¢ can be found analytically. It is inter-
esting to study the structure of the perturbation series in the
more general case as well, especially for mutually perpen-
dicular fields. The value of . that determines the restructur-
ing of the perturbation series can be found from the condi-

tion g=lg |, where®

7t 3 o 4
g Ts—J=§'}’{I+2T + 3y '+ .}, y—x, (16)

2
T . 27t _g 2 I 7 -5
Glvg|=l-y ——5 ¥ — 7% =Y
ull 3’”?) 4|4 (17)
b1+ =
TN R4
whence
o7 3
Ee ?15 :E;
'8’ ]
X 1+2?'2—[T—1)y“‘+0{f‘5)f
. 4

(17a)

and y,~3.54. This simple estimate ts in good agreement
with the numerical calculations (see the point of intersection
of the smooth and dashed (N=1) curves for #=90° in Fig.
1).

Similarly, we can calculate y, for arbitrary angiles 6. It
would be interesting 10 confirm the existence of a switch n
the asymptotic regime at y=y.{(#) by direct calculation of
the higher perturbation orders, as has been done above for
the case of paraliel fields.
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TABLE 1. Higher orders of penturbalion theory thydrogen atom in paralted felds},

—E {7y
k y=1) y=2 ¥=35 ¥=3.3 v={{)

0 (3.500 0500 0,500 0.500 (0. 5000

p 2.250 1.2500) —~ 4,000 —3.3125 —22.750

4 55.547 +3.089 1.039(2) P.578(2) 2.319(3}

& 4,908(3) 3.351H(3) —6.448(3) — 1.437{ 3} -8 358(5)

3 7.942(5) 5.201(5) 1.195{6) 2.53046) 6.971(8)
10 1.945(3) 1.232(8) —2.232(8) —8.027(8} — 7RI}
20 1.121022) 6.574(21) 1.033(22) 1.OL5(23) 8. 114{28)
30 7898137} 4.529(37) 348337} — 1.405(39) —u21H47)
40 1. 478(55} 2.389(54) 5.674({54) 5.015{(56) 2.642{68)
50 3.27%H73) 1.850{73) - 3.302(72] — 2035475} —-8.726(39)
650 5.282(92) 2.9658(92) 9.221{91) 6.026(971 2054(112)
&0 3.973(104) 2.328(104) —A.181{101) —H,4450106) —1.217(126)
a8 4.084( 108] 2289108} 5.368(107) T.450(1 1) 5.355(130)
70 444511 12) 2,493(112) 5.862(110) —9.115{114} — 2.497(135)
72 3.1300116) 2 873(ELG) 6.295(115) 1LIBI(119} 1.232(140}
74 8.250([20) 34990 120) FA58(119) — .61 123) —6.420( 1 44)
76 2033124) 4.496(124) 89811123} 2.329(127) 3.528(149)
78 1.OBS129) G085 128) 37280127 - 3537131 ~2.042{ 154)
80 1550133} 8.667(132) 1.598{132) 5.634(135) 1.243(159)

Mote. The table lists the coefficients in the perturbation theory series (4) for the ground state of the hydrogen atom taken with the opposite sign; & is the

perturbation theory order; «ibi=a- 10°.

3. Therefore, at y= v, there is a change in the character
of the asymptotic behavior of the higher orders of perturba-
tion theory.” Upeon going from one asymptotic regime to the
other, the perturbation series switches {when k=k,) from an
alternating series to one with a constant sign, which shows
up in the position of the singularities in the Bore! transfor-
mants that are closest to zero, and therefore 1n the choice of
an efficient method for taking the sum.'™

The complex sclutions of Eq. {3) found above corre-
spond to complex subbarrier trajectories which, therefore,
can be important in determining the asymptotic behavior of
the higher orders of perturbation theory. Their physical sig-
nificance can be clarified using the example of parallel # and
# fields. It is known that the asymptotic behavior of the
higher orders of perturbation theory is directly related to the
tunneling probability for a particle in a potential with the
“wrong’’ sign on the coupling constant, €.2., g— — g 1n the
case of an anharmonic oscillator,

| , x*
V{x}=§x +g )

oglE, |

40F g0

1200 =70

100 ;. 6o ) /
o 4 ¥ 8 7

F1G. 3. Higher orders of perturbation theory (Eq. (4)) for the ground state of
the hydregen atom in paraile! fieids.

(the Dyson phenomenon’™?0). In cur problem, %2 plays the
role of g. Going to purely imaginary values of the magnetic
field (#=i#), we obtain a potential proportional to
—(lfﬁ).ﬁé’zpz, decreases without bound as p= 1.|'|_1'2+}"
— %, [t 15 evident that in such a potential, tunnefing 15 pos-
sible both along the electric field (the z axis) and perpendicu-
lar to it. The complex solutions (10)-{12) probably corre-
spond to an analytic continuation of *‘perpendicular’
subbarrier trajectories of this sort from a region of purely
imaginary magnetic fields into a region of real .#.
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discussing thts paper and for useful comments. This work
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APPENDIX

The perturbation theory coefficients (4) for the energy of
the ground state of the hydrogen atom are polynomials in ¥*:

E(%,7)= 2 cyje’il= 2, Ey(y)e™, (AL)
) =

k

Ey{y)= E‘ﬁ Cems ¥, (A2)
P

where 24 is the order of perturbation theory, y=h/e
= a7 &, and a=e*/fic is the fine structure constant. Sev-
eral of the lowest orders of perturbation theory are known
exactly, i.e., in the form of rational fractions, as

1
Eo=— = E;=—E{9—-'y2],
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1 53
Es~—%; (3555—31371+ 3 }"‘].

1
Eg=——= (2 512 779—254 955°

512
49195 , 5581 5)
_,, [ 13012777 803 12368 405
Eg=—2"12. - g ¥
| 21577397 E) A3
540 7/

and were used to montior the numerical calculations. The
outer coefficients ¢;o and ¢g; in Eq. (A2} correspond to the
Stark? *! and Zeeman™ effects, while the cross terms
(1< j<k—1) were taken from Johnson et al.** and Lambin
et al®' Here cy_; ;=27 e*7/J)), where the ¢! are coeffi-
cients tabulated (for the case of paralle] fields) by Johnson
et al. ¥

The asymptotes of the higher-order perturbation theory
can be writien 1n the form
| 502

6 .
Ek{y}m—k![; coa+(— 1 c,a:‘,km}, (Ad)

!

where
3 V i\ ]
H:E' Hc=; ]+W ) {A3)

cp=¥/sinh v, and for ¢, we obtained {numerically) c,;=~1
—12.039 7?2 for ys1. The condition a=a, yiclds a cubic
equation whose solution (according to the Cardano formula)

leads to Eq. (135).

"The jmaginary lime method was developed for the theory of multiphoton
iobization of atoms and ions in strong optical fields,>'®* ang has also been
used in the problem of electron—positron pair production from the vacuum
in a variable electric feld,'’""* This methed has been nsed'* ' to study the

asympiotic behavior of the higher orders of the 1/n-expansion in moltidi-
mensional quanium mechanics problems, mcluding the two-center Cou-
lomb problem {another zpproach to this problem bas  appeared

recently'718)
2This funclion was first calculated by Kotova er of.’*

YNumerical calculations show that sign E,,=(— 1)**! for +=5.5 and 2k
=:80. On the other hand, for v=3 the coefficients £,, <0 for sufficiently
large k= k,, where k, depends on y and increases rapidly as it approaches
¥.. Thus, 244=0, 0, 4, and 68, respectively, for y=0, 2, 4, and 3 {see
Tatrle 1.

UThe first expansion follows from Egs. (2) and (3}, the second, from Eg.
{12} with N=1. The paameter in these expansions is vy~ ¢, with "y;j
~Q.08<= |,

SiAn analogous phenomenon occurs in the |/n-expansion in the problem of
two Coulomb centers.' ™' [n this case the role of the parameter ¥ is played
by the internuclear disiance K.

'H. A. Bethe and E. E. Salpeter, Quanium Mechanics of One- and Two-
Elecrron Svstems, Handbuch der Physik, Vol 35/1, Springer, Berlin
(1957), p. 88,

?1.. D. Landau and E. M. Lifshitz, Quansum Mechonics (Nanrelativistic
Theory), 3rd ed., Pergamon, New York (1977), )

B. M. Smimov, Physics of Atoms and lons [in Russian], Energoatomizdat,
Moscow (1986).

V. 8. Popov and A. V. Sergeev

‘Vv. S, Lisitsa, Usp. Fiz. Nauk 153, 379 (1987) [Sov. Phys. Usp. 3, 927
(1987)].

Y. D. Mur and V. S. Popov, Laser Phys. 3, 462 (1993),

°V. 8. Popov and A. V. Sergeev, JETP Lett. 63, 417 {1996).

V. 8. Popov, B. M. Karnakov, and V. D. Mur, Phys. Leit. A 229, 306
{1997).

8B. M. Kamakov, V. D. Mur, and V. S. Popov, JETP Lelt. &5, 405 (1997}

’A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, Zh. Eksp. Teer. Fiz.
50, 1393 (1966) [Sov. Phys. JETP 23, 924 (1966)].

¥¥. S. Popov, V. P. Kuzneisov, and A. M. Perelomov, Zh. éksp. Teor. Fiz.
53, 331 {1967} [Sov. Phys. JETP 26, 222 (l?ﬁﬁ}]

v, 8. Popov, JETP Lett. 13, 185 (1971); Zh. Eksp. Teor. Fiz. 61, 1334
(1971) [Sov. Phys. JETP M, 709 {1972)].

2A. 1. Baz’, Ya. B. Zel'dovich, and A. M. Perclomov, Scattering, Reac-
tions, and Decay in Nonrelativistic Quantum Mechanics [in Russian],
Nauka, Moscow {1971).

I3M., 8. Marinov and V. §. Popov, Yademava Fizika 15, 1271 (1972);
Fortschr. Phys, 28, 373 (1977). ﬂ

19y, 8. Popov, A. V. Sergeev, and A. V. Shcheblykin, Zh. Eksp. Teor. Fiz.
102, 1453 (1992) [Sov. Phys. JETP 75, 787 {1992}].

By. s, Popov and A. V. Sergeev, Phys. Len. A 172, 193 (1993}, V. 5.
Popov, and A. V. Sergeev, Zh. Eksp. Teor. Fiz. 105, 568 (1994) [JETP 78,

303 (1994)].
Y. 5. Popov, in New Methods in Quanium Theory, Kluwer, Dordrecht

{1996), p. 149.

'"M. Lopez-Cabrera. D. Z. Goodson, D. R, Herschbach, and J. D. Morgan,
Piys. Rev. Lett. 68, 1992 (1992),

85 Kais and D. R. Herschebach, J. Chem. Phvs. 98, 3990 (1993).

191, P. Kotova, A. M. Perelomov, and V. S, Popov, Zh, Eksp. Teor. Fiz. 54,
1151 {1968} [Sov. Phyvs. JETP 27, 616 (1968)].

20¢. M. Bender and T. T. Wu, Phys. Rev. Lett. 27, 461 (1971), Phys. Rev.
D 7, 1620 {1973}

A, D. Dolgov and V. S. Popov, Phys. Leu. B 79, 403 (1978); A. D.
Dolgov and V. S. Popoy, Zh. Eksp. Teor. Fiz. 75, 2010 (1978) [Sov. Phys.

JETP 48, 1012 (1978}].
2H. 1. Silverstone, ). G. Harris, J. Cizek, and J. Paldus, Phys. Rev. A 32,

1965 (1985} _

By M. Vainberg. V. L. Eletskil, and V. 5. Popov, Zh. Eksp. Teor. Fiz. §1,
1567 {1981) [Sov. Phys. JETP 54, 833 (1981)].

2 A, V. Sergeev and A. [. Sherstyuk, Zh. Eksp. Teor. Fiz. 82, 1070 {1982)
[Sov. Phys. JETP 55. 625 {1982}].

23v. Privman, Phys. Leu, A 81, 326 {1981).

E.R. Vrscay, Phys. Rev. A 33, 1433 {1986}

¥HY. j. Silverstone. Phys. Rev. A 18, 1853 (1978),

28H. J. Silverstene, B. G. Adams, I. Cizek & al., Phys. Rev. Lewt. 43, 1498
(1979).

Y. L. Eletskii and V. 5. Popov, Dokl. Akad. Nauk SSSR 250. 74 {1980}

05 P. Alliluev, V. L. Bietsky, and V. S. Popov, Phys. Lett. A 73, 103
(1979); 78. 43 (1980).

MY, Privman, Phys. Rev. A 22, 1833 (1980).

21, Benassi, V. Grecchi. E. Harrell, and B. Simon, Phys. Rev. Lett. 42, 704,
1430 (1979). *

335 P. Alliluev, V. M. Vainberg, V. L. Eletskii, and V. S. Popov, Zh. Eksp.
Teor, Fiz. 82, 77 {1982) {Sov. Phys. JETP 58, 46 (1982)].

A Galindo and P. Pascual, Nuovo Cimento B 34, 155 (1976).

¥B. G. Adams, J. E. Avron, J. Cizek er al., Phys. Rev. Lett. 43, 691 (1979},
Phys. Rev. A 21, 1914 (1980}.

%V, M. Vainberg. V. A. Gani, and A. E. Kudryavisev, Zh. Eksp. Teor. Fiz.
113, 550 (1998) [JETP 86, 305 {1998)].

V. Franceschini. V. Grecchi, and H. I. Silversione, Phys. Rev. A 32, (338
{1985}

By, 8. Popov, V. D. Mur, A. V. Sergeev 7 al., Phys. Lett. A 149, 418
(1990).

**F. I. Dyson, Phys, Rev. 85, 631 (1952),

¥B. R. Ichnson, K. F. Scheibner, and D, Farrely, Phys. Rev. Lett. 51, 228()

(1983).
S'p. Lambin, J. C. van Hay. and E. Kartheuser, Am. J. Phys. 46, 1144

(1978).

Translated by [}, H. McNeill



