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Using the imaginary time method, we study the structure of the perturbation series for the
hydrogen atom in electri¢” and magnetic7 fields. It is shown that there is a “critical” value

of the ratioy=.77/# at which the perturbation series for the ground state changes from

having a fixed sigrifor y<y.) to having a variable sigtfor y> v.). This conclusion is confirmed

by direct higher-order perturbation calculations. The change in the asymptotic regime is
explained by competition among the contributions of the various complex trajectories that describe
the subbarrier motion of the electrons. Here the paramgtelepends on the angie

between the electric and magnetic fields. 1®98 American Institute of Physics.
[S1063-776(98)01006-3

1. The problem of the hydrogen atom in external fields is sir? 6
of fundamental importance in quantum mechanics and B=1+ 18 Yo+,
atomic physics and is often encountered in applicatfoRs.

Recently®~8 a semiclassical theory has been developedvhile for y—c,
for the ionization of atoms and ions in constant and uniform

electric # and magnetic.7 fields. The imaginary time L—tar? 0y 1+0(y ?), 0=<6<m/2,
method ! was used to calculate the ionization probability ) cosé

w(&,.7), as it yields a convincing description of the subbar- B(y.0)=

rier motion of the particles using the classical equations of > (1+y72+..0), 0= /2.
motion, but with an imaginary “time.’? (3a)

The ionization probability for the atomis level with ) _ ) o
binding energyEy| = x?/2 is given by ¢;=m=e=1, natural Thus, for the functiorg, which determines the princip&x-
units) ponential factor in the ionization probability, we obtain

- 2 9(7,0)=1+0(5%), y—0,
W(&,.7)=k?R(, ) exp[ 3 a(v, 9)] , 1)

1 3 1
g(y,6)=m—§tanz 0-y *+..., y—x (3b)

which is asymptotically exact in the limit of weak fields
(e,h<1). Here e=#1«%%, and h=7%Ik? 7, are the re-
duced electric and magnetic fieldsis the angle between the
fields, ©,=m?e®#%* and .77,=m?ce’/#3 are the atomic
units for the field strengthsn is the electron massg;=h/e,

N

(for 6<m/2; for 0==/2 the asymptote has a different form;
see Eq. (16) below). The function g(y,6) increases
monotonically’ along with y (Fig. 1), so raising the mag-
netic field (at fixed #) sharply reduces the ionization prob-
ability, stabilizing the atomic levét’
. @ Using Eqgs(1)—(3) and invoking the same considerations
as beforé>% one can obtain the asymptotic behavior of the
B=1oly, To=T0(7,0) is the positive root of the equation  higher orders of perturbation theory, which is the subject of
2—sir? 6(r coth 7—1)%= 72, 3) this paper. We note that higher-order perturbatipn theory has.
been studied for use in many quantum mechanical problems:
and, finally,R is a (rather complicatedfactor introduced in  the anharmonic oscillatéf;?? the Yukawa and funnel
Ref. 7:R=227¢"2"P Q7 in the notation given there. Equa- potentials’>~*°the Stark’~*3and Zeematf > effects in the
tion (3) can be easily obtained using the imaginary timehydrogen atom, the molecular hydrogen ion, etc., as well as
method, wherer, has a simple physical significanceg=  for 1/n-expansions?~1’ The problem examined below is of
—iw ty, Wherew, =|e|.7Z/mcis the Larmor frequency and interest in that the asymptotic regime undergoes a change at
to is the “time” (purely imaginary for subbarrier motion of a certain value ofy=vy.: the perturbation series switches
the electron. Note that fop—0, from a constant sign series to an alternating series, which is

3 1
9(%0)=§,8[1— sin 9—§ﬂ cos 6
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g(%.6) 6 =90 . turbation expansion, omitting the factpt+(—1)¥]/2. In
particular, for the Stark effect in the hydrogen atom, we
have®

6 |<3)T 107 7363
|2

Ek%—;k 1_@—’—@—}_“" a=g, B=0
(69)
(in the ground stat&y,=—1/2, k=+/—2E,=1).
- Besides the Stark expansiof), let us consider the ex-
0 5 10 15 y pansion of the ground state energy in powers of the magnetic
field:

FIG. 1. The functiong(vy,#) (smooth curves next to which the anglds

indicated as a function of the parameter The dashed curves are the values “. ~ K
of |g¢(y,8)| for N=1 and 2, corresponding to the solution of E(B0)— E= kEO Ekak, Ex=17 "Ex. (8)
(12). =

In the case of the Zeeman effdgt—), the higher orders of
this expansion also increase factoriaify*®

explained by examining a new class of complex subbarrier _ ool 2 5/2 3\ /1\kK .
trajectories besides the usual subbarrier trajectory. Ex=(—1)%*2 (; Il k+3 (; [1+0O(k™)]
The asymptotic behavior of the higher orders of pertur- (6b)

bation theory is of interest from a general standpoint, but is )
also of practical importance for calculating the shifts of (K €ven, which corresponds formally to the asymptd
atomic levels and their widthE=%w(¥,7), using special With & purely imaginary parameter=a/y=* (i) *. At
procedures for summing diverging series, such as the Bordhe same time, fory>1, by virtue of Eqgs.(3b) and(7), we
or Pade-Borel summation techniqué®;3337:38 have
2. In calculating the energy levels of atoms in an electric 3
field #, the standard approach is to expand the energy in a a=23/2yg(y, 6)%2— cos 6—0,
perturbation series, Y
o which is inconsistent with the previous result. This suggests
E(%)= 2 E Z¥. (4) j[he e>.<istence of. other solutiomise: complex subb.arrifer tra-
k=0 jectories for which the parameter does not vanish in the

According to Dyson’s argumen,the instability of the state imit of a strong magnetic fie)d We shall show that this is
is related to the divergence of the perturbation theory series. Takingr=i7 andy=ivy, we rewrite Eq(3) in the form
We_ shall study the behavior of the highelr o_rders of pertur- T2+ sir? 9(1—7 cotT)2=72. (9)
bation theory in the presence of a magnetic field. To evaluate ~

the behavior of the perturbation coefficiefigask—o, we  There are two possibilities ag—oe: either 1g— *iy/cosd

use the dispersion relatigh?®? (here cotry—Fi) or 7o— =N for integer N#0(cotr
o w T —o). The first possibility corresponds to the real solution
1 [(E® 1 (=D _ |
K=o T d&=— 27 |, 7T d& (50  considered above. In the second case we obtain

(here we have taken advantage of the familiar analytic propro=Nm+ N sin 6-5 1+ % (N)3 sin @

erties of the functiorE(#), in particular its behavior on a

large circlé? |E(#)|«(# In )% as #—x for the ground

state of hydrogen X
The asymptotic behavior of the higher orders of pertur-

bation theory is determined by the level widFti#) in an (10

arbitrarily small field, so that it is possible to use the semi-

classical Eq(1). Equation(3) is even with respect ta and

has a pair of rootst 7y, for which the values of(y,0)

differ in sign. Given this, Eqs(1) and(5) imply that

1+(—1)k
Ek%(T) klakk?

+...

2 - 1 -
1-3 sir? 0) > 3+sin 0( 1-3 sir? 0) y 4

=1,2,..), with 7%, —7, and—7% also solutions of Eq.
(9). Introducing the function

2y
G(’Y! 0): g 90(71 9)

C1
Co+ ?+... , k—oo, (6) 773
=2 =2
a=3[2x%(7,0)] * Y 3wy
(in the case of the ground state, the odd orders of the pertur- (12)

bation expansion for the ener@(#) vanish identically. In  and substituting Eq(10) into it, some simple but cumber-
the following we examine only the even orders of the per-some calculations yield

1 . - - 1
1+ = sir? 6| 1+ 3 cot To(COt ro—~—>”
2 To
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ImT, The condition|g.(y,0)|=g(y,0)=1 determines the “criti-
cal” value of y (Ref. 6):
ye=m[(1+v2)P— (1+v2) Y3~ 1=5.270495...,
N=1 (15

(see Appendix For y<w,, i.e., in sufficiently strong elec-
tric fields, the dominant contribution to the asymptdicis
from the subbarrier trajectory with rea}, corresponding to

0 02 04 06 08 'Rero the functiong(y,0), and the perturbation series has a fixed
_ _ sign. If, however, y>y., then a,=15g] '>a
FIG. 2. Solutions of Eq(9) in the complex plane fo#=30°, 60°, and 90 _ 1_5|g|71, so the signs of the higher orders of perturbation

N=1). The values of the parameter0,2,4,... are indicated on the curves. .
( ) P #r theory should alternate according to E43). Thus, aty

= v, the structure of the perturbation series changes.
We have verified this by direct calculation of the pertur-
bation series coefficients, up to k=80 (see Table)l (For
G(y,0)= N[ 1-2sing-y* k=10 our calculations agree with an earlier pdpand for
v=0, with Refs. 28—3B Some of these results are shown in
Nr)? ~ Fig. 3. It has been shown that betwegr5 and 5.5, the
3 cos 0) Y order of the signd of the coefficientsE, does indeed
change. In addition, fofy<< vy, the coefficientE,(y) are all
of the same order of magnitudsinceg(y,f8)=1 and the
asymptotic parametex= 3/2 is independent of), while for
v> v, they begin an additionalnd very rapidl growth in
1 - . . S
+(N)2 sir? 0(_ Sir? 0_1) 74 ac_corda_nce_wnh the reduction {g.(y)|, which is clearly
3 evident in Fig. 3(see also Eq(A4)).
1 2 In the case considered hef@=0), the critical value of
= sir? 0+(N7-r)2(— sin* 6 the parametety=h/e can be found analytically. It is inter-
3 15 esting to study the structure of the perturbation series in the
more general case as well, especially for mutually perpen-
: (12)  dicular fields. The value of, that determines the restructur-
ing of the perturbation series can be found from the condi-
These expansions are valid fgr-o. On the other hand, the tion g=|g.|, wheré&
value of 7, at y=0 can be determined from the equation -3
cotro—1/mo=*i/sin6. A numerical analysis of Eq(9) g( Y, E) =3 Y(1+2y 24y %+.), y—», (16
shows that ag increases, the poirvt0=i~ro(y, 0) describes
the curves shown in Fig. 2 in the complex plane. T o, 27, 2i w?
We shall mainly be interested in the case-1, where G( Y E) =l=y ey - Y
the functionG(y,#) has its minimum absolute value. The )
values oflg.|=|(37/2y)G(,6)| for N=1 and 2 are shown 1+ 31) y4
in Fig. 1 as the dotted curves. For sufficiently largevhen 20
lgc|<g, the asymptotic parametercan be found from Eq.
(7) by replacingg with g.. Because of the existence of a pair
of complex conjugate solutions and~73 , the asymptotes of
the higher-order perturbation theory now have the form

+| sir? 0—(

2
+(N)? sin 0(§ sir? 0—1) Ty

—(N)? sin 0

Y S+

1 1
_§S|n2 0+Z

2

+..., (17)

+’7T
6

_377
_2_7,

whence
2

aa
el Vs E
8
1+2y2—(%—1) y 4t O(ye)}
so that the perturbation series is alternating for sufficiently (179

largek.
g and y.~3.54. This simple estimate is in good agreement

In the limit #—0 (parallel # and .7 fields), the expan- i i i . . .
sion (12) terminates at the third term, so a solution can bewnh the numerical calculationsee the point of intersection

obtained in analytic form: of the smooth and dashetl&1) curves for=90° in Fig.

Ev~(—1)X2 Re(CAYKIKE, A=i3=3/29.(7,0)|,
(13 X

1).
G(v 0 =Nl1 (Nm)? Similarly, we can calculate, for arbitrary angles. It
(0= e would be interesting to confirm the existence of a switch in

the asymptotic regime ag= y.(6) by direct calculation of
the higher perturbation orders, as has been done above for
the case of parallel fields.

2
(N) } (14)

0 =i 3N 1
gC(71 )_I 27 + 3,y2
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TABLE |. Higher orders of perturbation theoihydrogen atom in parallel fielgls

—E(v)
k v=0 y=2 y=5 y=5.5 vy=10

0 0.500 0.500 0.500 0.500 0.5000

2 2.250 1.2500 —4.000 —5.3125 —22.750

4 55.547 40.089 1.039) 1.5782) 2.31993)

6 4.9083) 3.3513) —6.4483) —1.4374) —9.3585)

8 7.9425) 5.201%5) 1.1956) 2.9306) 6.9718)
10 1.94%8) 1.2328) —2.2328) —8.0218) -7.8111))
20 1.12122) 6.57421) 1.03322 1.01523 8.11428)
30 7.89837) 4.52937) 3.48537) —1.40539) —9.21%47)
40 1.47855) 8.38954) 5.67454) 5.01556) 2.64268)
50 3.27973) 1.85073) -3.50272) —2.05475) —8.72689)
60 5.28292) 2.96892) 9.22191) 6.02697) 2.054112
66 3.973109 2.228104) —6.181101) —6.445106) —1.217126
68 4.084108 2.289108 5.568107) 7.45Q110 5.355130
70 4.449112 2.493112 5.862110 —9.1151149 —2.497113H
72 5.13Q116) 2.873116) 6.295115 1.181119 1.233140
74 6.250120 3.499120 1.558119 —-1.614123 —6.420144
76 8.033124) 4.496124) 8.981(123 2.329127) 3.528149
78 1.088129 6.085128 3.728127) —3.563113) —2.042154)
80 1.550133 8.661132 1.598132 5.654135 1.243159

Note. The table lists the coefficients in the perturbation theory sédg$or the ground state of the hydrogen atom taken with the opposite kignthe
perturbation theory ordeg(b)=a- 10.

3. Therefore, aty= v, there is a change in the character (the Dyson phenomendt?9. In our problem,7? plays the
of the asymptotic behavior of the higher orders of perturbarole of g. Going to purely imaginary values of the magnetic
tion theory® Upon going from one asymptotic regime to the field (7#=i.7), we obtain a potential proportional to
other, the perturbation series switcagienk=kg) from an —(1/8)}/2 2 decreases without bound gs=\x2+y2
alternating series to one with a constant sign, which shows

: . ) S 2>, |t is evident that in such a potential, tunneling is pos-
up in the position of the singularities in the Borel transfor- sible both along the electric fielthe z axis) and perpendicu-
mants that are closest to zero, and therefore in the choice

an efficient method for taking the suFh%%" ¥r to it. The complex solution§10)—(12) probably corre-

) spond to an analytic continuation of “perpendicular”

The complex solutions of E¢3) found above corre- o hparrier trajectories of this sort from a region of purely
spond to complex subbarrier trajectories which, therefore’rmaginary magnetic fields into a region of rea.
can be important in determining the asymptotic behavior of
the higher orders of perturbation theory. Their physical sig- The authors thank V. M. Miaberg and V. D. Mur for
nificance can be clarified using the example of parafle@nd  discussing this paper and for useful comments. This work
7 fields. It is known that the asymptotic behavior of the was partially supported by the Russian Fund for Fundamen-
higher orders of perturbation theory is directly related to thetal Researct{Grant Nos. 95-02-05417 and 98-02-17D07
tunneling probability for a particle in a potential with the
“wrong” sign on the coupling constant, e.qg— —g in the

case of an anharmonic oscillator,

APPENDIX
1, xt _ o
V(X)= =z X°+q — The perturbation theory coefficien) for the energy of
2 4 2.
the ground state of the hydrogen atom are polynomiajg’in
logIE] E(£,.70)=2 cje?h?= 3, Ealy)e™, (A1)
1] =
1401 X
k=80 Ex(y)= ]_ZO kv, (A2)
1200 ,_19 i . :
= ; where X is the order of perturbation theoryy=h/e
i =a. 71, anda=e?/Ac is the fine structure constant. Sev-
100r k=60 ! eral of the lowest orders of perturbation theory are known
. s . . exactly, i.e., in the form of rational fractions, as
0 4 ¥ 8 Y
FIG. 3. Higher orders of perturbation thediyg. (4)) for the ground state of E.=— E E,=— E (9— ),2)
the hydrogen atom in parallel fields. 0 2’ 2 4 '
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1 ,. 53 ,
E4=— 55| 3555-318y*+ 2 ',

Ee= 2 512 779- 254 955/

6),

13012 777 803 12368 405
7 e 9 0%

-5

49195 , 5581
+ _—
3 9

E8: _212'<

(A3)

21577397
T 7540 )

and were used to monitor the numerical calculations. The

outer coefficientx,, andcg, in Eq. (A2) correspond to the

Stark’3! and Zeemaif effects, while the cross terms

(1<j=<k—1) were taken from Johnsaet al*° and Lambin
etal* Herec,_; ;=273 1), where thee) are coeffi-
cients tabulatedfor the case of parallel fielgisoy Johnson
et al*®
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