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Ionization of atoms in weak fields and the asymptotic behavior of higher-order
perturbation theory
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Using the imaginary time method, we study the structure of the perturbation series for the
hydrogen atom in electricE and magneticH fields. It is shown that there is a ‘‘critical’’ value
of the ratiog5H/E at which the perturbation series for the ground state changes from
having a fixed sign~for g,gc! to having a variable sign~for g.gc!. This conclusion is confirmed
by direct higher-order perturbation calculations. The change in the asymptotic regime is
explained by competition among the contributions of the various complex trajectories that describe
the subbarrier motion of the electrons. Here the parametergc depends on the angleu
between the electric and magnetic fields. ©1998 American Institute of Physics.
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1. The problem of the hydrogen atom in external fields
of fundamental importance in quantum mechanics a
atomic physics and is often encountered in applications.1–5

Recently,6–8 a semiclassical theory has been develop
for the ionization of atoms and ions in constant and unifo
electric E and magneticH fields. The imaginary time
method9–11 was used to calculate the ionization probabil
w(E ,H), as it yields a convincing description of the subba
rier motion of the particles using the classical equations
motion, but with an imaginary ‘‘time.’’1!

The ionization probability for the atomics level with
binding energyuE0u5k2/2 is given by (\5m5e51, natural
units!

w~E ,H!5k2R~g,u! expH 2
2

3e
g~g,u!J , ~1!

which is asymptotically exact in the limit of weak field
(e,h!1). Here e5E /k3Ea and h5H/k2Ha are the re-
duced electric and magnetic fields,u is the angle between th
fields, Ea5m2e5/\4 and Ha5m2ce3/\3 are the atomic
units for the field strengths,m is the electron mass,g5h/e,

g~g,u!5
3

2
bF12

Ab221

g
sin u2

1

3
b2 cos2 uG , ~2!

b5t0 /g, t05t0(g,u) is the positive root of the equation

t22sin2 u~t coth t21!25g2, ~3!

and, finally,R is a ~rather complicated! factor introduced in
Ref. 7:R522he122nPQh in the notation given there. Equa
tion ~3! can be easily obtained using the imaginary tim
method, wheret0 has a simple physical significance:t05
2 ivLt0 , wherevL5ueuH/mc is the Larmor frequency and
t0 is the ‘‘time’’ ~purely imaginary! for subbarrier motion of
the electron. Note that forg→0,
1121063-7761/98/86(6)/5/$15.00
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b511
sin2 u

18
g21...,

while for g→`,

b~g,u!5H 1

cosu
2tan2 ug211O~g22!, 0<u,p/2,

g

2
~11g221...!, u5p/2.

~3a!

Thus, for the functiong, which determines the principal~ex-
ponential! factor in the ionization probability, we obtain

g~g,u!511O~g2!, g→0,

g~g,u!5
1

cosu
2

3

2
tan2 u•g211..., g→` ~3b!

~for u,p/2; for u5p/2 the asymptote has a different form
see Eq. ~16! below!. The function g(g,u) increases
monotonically2! along with g ~Fig. 1!, so raising the mag-
netic field ~at fixed E! sharply reduces the ionization prob
ability, stabilizing the atomic level.6,7

Using Eqs.~1!–~3! and invoking the same consideration
as before,15,16 one can obtain the asymptotic behavior of t
higher orders of perturbation theory, which is the subject
this paper. We note that higher-order perturbation theory
been studied for use in many quantum mechanical proble
the anharmonic oscillator,20–22 the Yukawa and funne
potentials,23–26 the Stark27–33 and Zeeman34–36 effects in the
hydrogen atom, the molecular hydrogen ion, etc., as wel
for 1/n-expansions.14–17 The problem examined below is o
interest in that the asymptotic regime undergoes a chang
a certain value ofg5gc : the perturbation series switche
from a constant sign series to an alternating series, whic
2 © 1998 American Institute of Physics
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explained by examining a new class of complex subbar
trajectories besides the usual subbarrier trajectory.

The asymptotic behavior of the higher orders of pert
bation theory is of interest from a general standpoint, bu
also of practical importance for calculating the shifts
atomic levels and their widthsG5\v~E ,H!, using special
procedures for summing diverging series, such as the B
or Pade´–Borel summation techniques.28–33,37,38

2. In calculating the energy levels of atoms in an elect
field E , the standard approach is to expand the energy
perturbation series,

E~E !5 (
k50

`

EkEk. ~4!

According to Dyson’s argument,39 the instability of the state
~complex energyE5Er2 iG/2, whereG is the level width!
is related to the divergence of the perturbation theory ser
We shall study the behavior of the higher orders of pert
bation theory in the presence of a magnetic field. To evalu
the behavior of the perturbation coefficientsEk ask→`, we
use the dispersion relation20,28,33

Ek5
1

2p i R E~E !

Ek11 dE52
1

2p E
0

` G~E !

Ek11 dE ~5!

~here we have taken advantage of the familiar analytic pr
erties of the functionE(E), in particular its behavior on a
large circle32: uE(E)u}(E ln E)2/3 as E→` for the ground
state of hydrogen!.

The asymptotic behavior of the higher orders of pert
bation theory is determined by the level widthG~E! in an
arbitrarily small field, so that it is possible to use the sem
classical Eq.~1!. Equation~3! is even with respect tot and
has a pair of roots6t0 , for which the values ofg(g,u)
differ in sign. Given this, Eqs.~1! and ~5! imply that

Ek'
11~21!k

2
k!akkbS c01

c1

k
1...D , k→`, ~6!

a53@2k3g~g,u!#21 ~7!

~in the case of the ground state, the odd orders of the pe
bation expansion for the energyE(E) vanish identically!. In
the following we examine only the even orders of the p

FIG. 1. The functiong(g,u) ~smooth curves next to which the angleu is
indicated! as a function of the parameterg. The dashed curves are the valu
of ugc(g,u)u for N51 and 2, corresponding to the solution of Eqs.~10!–
~12!.
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turbation expansion, omitting the factor@11(21)k#/2. In
particular, for the Stark effect in the hydrogen atom, w
have28

Ek'2
6

p
k! S 3

2D kF12
107

18k
1

7363

648k2 1...G , a5
3

2
, b50

~6a!

~in the ground stateE0521/2, k5A22E051).
Besides the Stark expansion~4!, let us consider the ex

pansion of the ground state energy in powers of the magn
field:

E5 (
k50

`

ẼkHk, Ẽk5g2kEk . ~8!

In the case of the Zeeman effect~g→`!, the higher orders of
this expansion also increase factorially:35,36

Ẽk'~21!~k12!/2S 4

p D 5/2

GS k1
3

2D S 1

p D k

@11O~k21!#

~6b!

~k even!, which corresponds formally to the asymptote~6!

with a purely imaginary parameterã5a/g56(p i )21. At
the same time, forg@1, by virtue of Eqs.~3b! and ~7!, we
have

ã53/2gg~g,u!'
3

2g
cosu→0,

which is inconsistent with the previous result. This sugge
the existence of other solutions~i.e., complex subbarrier tra
jectories for which the parameterã does not vanish in the
limit of a strong magnetic field!. We shall show that this is
indeed so, by solving Eq.~3! for g→` in the complex plane.

Takingt5 i t̃ andg5 i g̃, we rewrite Eq.~3! in the form

t̃21sin2 u~12 t̃ cot t̃ !25g̃2. ~9!

There are two possibilities asg→`: either t̃0→6 ig/cosu

~here cott̃0→7i! or t̃0→6Np for integer NÞ0(cot t̃0

→`). The first possibility corresponds to the real soluti
considered above. In the second case we obtain

t̃05Np1Np sin u•g̃211
1

2
~Np!3 sin u

3F S 12
2

3
sin2 u D g̃231sin uS 12

1

3
sin2 u D g̃24G1...

~10!

(N51,2,...), with t̃0* , 2 t̃, and2 t̃0* also solutions of Eq.
~9!. Introducing the function

G~g,u!5
2g̃

3p
gc~g,u!

5
2t̃0

3

3pg̃2 H 11
1

2
sin2 uF113 cot t̃0S cot t̃02

1

t̃0
D G J
~11!

and substituting Eq.~10! into it, some simple but cumber
some calculations yield



n

e

ir
f

tl

b

ed

on

r-

in

-
the
en-
r-
di-

nt

in

for

s.

1124 JETP 86 (6), June 1998 V. S. Popov and A. V. Sergeev
G~g,u!5NH 122 sin u•g̃21

1S sin2 u2
~Np!2

3
cos2 u D g̃22

1~Np!2 sin uS 2

3
sin2 u21D •g̃23

1~Np!2 sin2 uS 1

3
sin2 u21D g̃24

2~Np!2 sin uF1

3
sin2 u1~Np!2S 2

15
sin4 u

2
1

3
sin2 u1

1

4D G g̃251...J . ~12!

These expansions are valid forg→`. On the other hand, the
value of t̃0 at g50 can be determined from the equatio
cot t̃021/t̃056 i /sinu. A numerical analysis of Eq.~9!

shows that asg increases, the pointt05 i t̃0(g,u) describes
the curves shown in Fig. 2 in the complex plane.

We shall mainly be interested in the caseN51, where
the functionG(g,u) has its minimum absolute value. Th
values ofugcu5u(3p/2g̃)G(g,u)u for N51 and 2 are shown
in Fig. 1 as the dotted curves. For sufficiently largeg, when
ugcu,g, the asymptotic parametera can be found from Eq.
~7! by replacingg with gc . Because of the existence of a pa
of complex conjugate solutionst̃0 andt̃0* , the asymptotes o
the higher-order perturbation theory now have the form

Ẽk;~21!k/2 Re~CAk!k!kb, A5 i ã53/2ugc~g,u!u,
~13!

so that the perturbation series is alternating for sufficien
largek.

In the limit u→0 ~parallel E and H fields!, the expan-
sion ~12! terminates at the third term, so a solution can
obtained in analytic form:

G~g,0!5NF12
~Np!2

3g̃2 G ,
gc~g,0!5 i

3Np

2g F11
~Np!2

3g2 G . ~14!

FIG. 2. Solutions of Eq.~9! in the complex plane foru530°, 60°, and 90°
(N51). The values of the parameterg50,2,4,... are indicated on the curve
y

e

The conditionugc(g,0)u5g(g,0)51 determines the ‘‘criti-
cal’’ value of g ~Ref. 6!:

gc5p@~11& !1/32~11& !21/3#2155.270495...,

N51 ~15!

~see Appendix!. For g,gc , i.e., in sufficiently strong elec-
tric fields, the dominant contribution to the asymptoticEk is
from the subbarrier trajectory with realt0 , corresponding to
the functiong(g,0), and the perturbation series has a fix
sign. If, however, g.gc , then ac51.5ugcu21.a
51.5ugu21, so the signs of the higher orders of perturbati
theory should alternate according to Eq.~13!. Thus, atg
5gc the structure of the perturbation series changes.

We have verified this by direct calculation of the pertu
bation series coefficientsEk up to k580 ~see Table I!. ~For
k<10 our calculations agree with an earlier paper40 and for
g50, with Refs. 28–33!. Some of these results are shown
Fig. 3. It has been shown that betweeng55 and 5.5, the
order of the signs3! of the coefficientsEk does indeed
change. In addition, forg,gc the coefficientsEk(g) are all
of the same order of magnitude~since g(g,u)[1 and the
asymptotic parametera53/2 is independent ofg!, while for
g.gc they begin an additional~and very rapid!! growth in
accordance with the reduction inugc(g)u, which is clearly
evident in Fig. 3~see also Eq.~A4!!.

In the case considered here~u50!, the critical value of
the parameterg5h/e can be found analytically. It is inter
esting to study the structure of the perturbation series in
more general case as well, especially for mutually perp
dicular fields. The value ofgc that determines the restructu
ing of the perturbation series can be found from the con
tion g5ugcu, where4!

gS g,
p

2 D5
3

8
g~112g221g241...!, g→`, ~16!

GS g,
p

2 D512g222
2p2

3
g242

2i

g F12
p2

6
g22

1
p2

6 S 11
3p2

20 Dg24G1..., ~17!

whence

UgcS g,
p

2 D U5 3p

2g

3F112g222S 8p2

3
21Dg241O~g26!G

~17a!

and gc'3.54. This simple estimate is in good agreeme
with the numerical calculations~see the point of intersection
of the smooth and dashed (N51) curves foru590° in Fig.
1!.

Similarly, we can calculategc for arbitrary anglesu. It
would be interesting to confirm the existence of a switch
the asymptotic regime atg5gc(u) by direct calculation of
the higher perturbation orders, as has been done above
the case of parallel fields.
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TABLE I. Higher orders of perturbation theory~hydrogen atom in parallel fields!.

k

2Ek(g)

g50 g52 g55 g55.5 g510

0 0.500 0.500 0.500 0.500 0.5000
2 2.250 1.2500 24.000 25.3125 222.750
4 55.547 40.089 1.039~2! 1.578~2! 2.319~3!
6 4.908~3! 3.351~3! 26.448~3! 21.437~4! 29.358~5!
8 7.942~5! 5.201~5! 1.195~6! 2.930~6! 6.971~8!

10 1.945~8! 1.232~8! 22.232~8! 28.027~8! 27.817~11!
20 1.121~22! 6.574~21! 1.033~22! 1.015~23! 8.114~28!
30 7.898~37! 4.529~37! 3.485~37! 21.405~39! 29.211~47!
40 1.478~55! 8.389~54! 5.674~54! 5.015~56! 2.642~68!
50 3.279~73! 1.850~73! 23.502~72! 22.054~75! 28.726~89!
60 5.282~92! 2.968~92! 9.221~91! 6.026~97! 2.054~112!
66 3.973~104! 2.228~104! 26.181~101! 26.445~106! 21.217~126!
68 4.084~108! 2.289~108! 5.568~107! 7.450~110! 5.355~130!
70 4.449~112! 2.493~112! 5.862~110! 29.115~114! 22.497~135!
72 5.130~116! 2.873~116! 6.295~115! 1.181~119! 1.232~140!
74 6.250~120! 3.499~120! 1.558~119! 21.614~123! 26.420~144!
76 8.033~124! 4.496~124! 8.981~123! 2.329~127! 3.528~149!
78 1.088~129! 6.085~128! 3.728~127! 23.537~131! 22.042~154!
80 1.550~133! 8.667~132! 1.598~132! 5.654~135! 1.243~159!

Note.The table lists the coefficients in the perturbation theory series~4! for the ground state of the hydrogen atom taken with the opposite sign;k is the
perturbation theory order;a(b)[a•10b.
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3. Therefore, atg5gc there is a change in the charact
of the asymptotic behavior of the higher orders of pertur
tion theory.5! Upon going from one asymptotic regime to th
other, the perturbation series switches~whenk>k0! from an
alternating series to one with a constant sign, which sho
up in the position of the singularities in the Borel transfo
mants that are closest to zero, and therefore in the choic
an efficient method for taking the sum.17,33,37

The complex solutions of Eq.~3! found above corre-
spond to complex subbarrier trajectories which, therefo
can be important in determining the asymptotic behavior
the higher orders of perturbation theory. Their physical s
nificance can be clarified using the example of parallelE and
H fields. It is known that the asymptotic behavior of th
higher orders of perturbation theory is directly related to
tunneling probability for a particle in a potential with th
‘‘wrong’’ sign on the coupling constant, e.g.,g→2g in the
case of an anharmonic oscillator,

V~x!5
1

2
x21g

x4

4

FIG. 3. Higher orders of perturbation theory~Eq. ~4!! for the ground state of
the hydrogen atom in parallel fields.
-

s

of

,
f
-

e

~the Dyson phenomenon39,20!. In our problem,H 2 plays the
role of g. Going to purely imaginary values of the magne

field (H5 i H̃), we obtain a potential proportional t

2(1/8)H̃ 2r2, decreases without bound asr5Ax21y2

→`. It is evident that in such a potential, tunneling is po
sible both along the electric field~thez axis! and perpendicu-
lar to it. The complex solutions~10!–~12! probably corre-
spond to an analytic continuation of ‘‘perpendicular
subbarrier trajectories of this sort from a region of pure
imaginary magnetic fields into a region of realH.

The authors thank V. M. Va�nberg and V. D. Mur for
discussing this paper and for useful comments. This w
was partially supported by the Russian Fund for Fundam
tal Research~Grant Nos. 95-02-05417 and 98-02-17007!.

APPENDIX

The perturbation theory coefficients~4! for the energy of
the ground state of the hydrogen atom are polynomials ing2:

E~E ,H!5(
i , j

ci j e
2ih2 j5 (

k50

`

E2k~g!e2k, ~A1!

E2k~g!5(
j 50

k

ck2 j , jg
2 j , ~A2!

where 2k is the order of perturbation theory,g5h/e
5aH/E , anda5e2/\c is the fine structure constant. Se
eral of the lowest orders of perturbation theory are kno
exactly, i.e., in the form of rational fractions, as

E052
1

2
, E252

1

4
~92g2!,
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E452
1

64 S 35552318g21
53

3
g4D ,

E652
1

512 S 2 512 7792254 955g2

1
49195

3
g42

5581

9
g6D ,

E8522212
•S 13 012 777 803

4
2...2

12 368 405

9
g6

1
21 577 397

540
g8D , ~A3!

and were used to monitor the numerical calculations. T
outer coefficientsck0 andc0k in Eq. ~A2! correspond to the
Stark27–31 and Zeeman34 effects, while the cross term
(1< j <k21) were taken from Johnsonet al.40 and Lambin
et al.41 Hereck2 j , j5223 je (k2 j , j ), where thee ( i j ) are coeffi-
cients tabulated~for the case of parallel fields! by Johnson
et al.40

The asymptotes of the higher-order perturbation the
can be written in the form

Ek~g!'2k! H 6

p
c0ak1~21!k/2S 4

p D 5/2

c1ac
kk1/2J , ~A4!

where

a5
3

2
, ac5

g

p S 11
p2

3g2D 21

, ~A5!

c05g/sinhg, and for c1 we obtained~numerically! c1'1
212.03g22 for g@1. The conditiona5ac yields a cubic
equation whose solution~according to the Cardano formula!
leads to Eq.~15!.

1!The imaginary time method was developed for the theory of multipho
ionization of atoms and ions in strong optical fields,9,10,12and has also been
used in the problem of electron–positron pair production from the vacu
in a variable electric field.11,13This method has been used14–16to study the
asymptotic behavior of the higher orders of the 1/n-expansion in multidi-
mensional quantum mechanics problems, including the two-center C
lomb problem ~another approach to this problem has appea
recently17,18!.

2!This function was first calculated by Kotovaet al.19

3!Numerical calculations show that signE2k5(21)k11 for g>5.5 and 2k
<80. On the other hand, forg<5 the coefficientsE2k,0 for sufficiently
largek>k0 , wherek0 depends ong and increases rapidly as it approach
gc . Thus, 2k050, 0, 4, and 68, respectively, forg50, 2, 4, and 5~see
Table I!.

4!The first expansion follows from Eqs.~2! and ~3!, the second, from Eq.
~12! with N51. The parameter in these expansions isg22, with gc

22

;0.08!1.
5!An analogous phenomenon occurs in the 1/n-expansion in the problem o

two Coulomb centers.14–16In this case the role of the parameterg is played
by the internuclear distanceR.
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