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A RECURSIVE ALGORITHM FOR PADE-HERMITE APPROXIMATIONS®

£.V,., SERGEYEV

An algorithm for the successive calculation of multiple-valued approxi-
mations, or Padé-Hermite approximaticns, is proposed. Simple formulas
which generalize the recurrence formilas between the numerators and
dencminators of appropriate continued fractions are chtained for the
polynomials which take part in the determination of Padé-Hermite
approximations. General expressions for the coefficients of the
recurrence formulas are obtained in cases of quadratic and cubic approxi-
mations to the functions (1+z}e and e=

1. Introduction. ,
1f the function ¢ is specified in the form of the expansion

¢{Ii=h§:tmxﬂ (1.1)
T=ui]
then Padé approximations are often used to calculate approximately the sum of series (l.1).
By definition, the proportion of the polynomials 4'Y and A/ of powers no higher than a-
and m respectively, which has the same ny a1 first coefficients of Maclaurin's expansiosn
as the function ¢, iz called a Pacda approximation [n, #.]. The polynomials A4 and 4%
in this case satisfv the equatien

AP (2} (2) —A® (z) =0 (z+™),

The papers of Hermite /1/ and P24 /2/ aiso consider the more generzl case when soveral
polynomials occur - as coefficiernts - in the linear ecurations between certain functions,

Suppose .. f*  are functions which can be expanded in a Maclaurin series,

Then, according to /3, 4/, the set of polyncmials (4™, ., 4%) of a power no higher
than ny,...,n, respectively, is called a Padé-Hermite form of the type ["e,...,m} associ-
ated with the system (f',.. ., ), if

k .
2A‘F’{zjf‘” (x) =0 {2}, N='Z etk (1.2}
Hwed fom 1

We shall ecall the residual functian |

L]
1
S{z) = ;F.TZA“]] {z) f* (). {1.3)
e |
The Padé-Eermite approximation (FU, . f™)  is obtained from the equation
]

E AW (Y FIP () =],

Fumi
in order for the functions F ., F® 1o ke uniquely defined, some kind of limitations or
tonnections are usually imposed on both fP. 0™ and FUU L F™ When k=3, for
SXample (see /5/}, for the guadratic approximations U ) =1, {2 (2)=[F*{z)}]* and for the
integral approximations FO9{xy =4, /¥ ()= (d/dz) {3 (),
The Padé~Hermite approximations are used to calculate approximately the sum of series
1.1} in the vicinity of the features of the function ¢, which can differ from the poles
/5/. For example, if the functien % has branching peints of the square-root type, the

Tuadratic approximations (ff'=1, fP=p, fY=¢*) are usually used. The approximate value of the
function ¢ is obtained in this case by sclving the quadratic equation

— AR [ (A1) 24410 413 ]%

ﬁ. = 2‘4‘3] L] {1*41-
We can alsc write Eg.(1.2) in the form of a set of N1 homogeneous linear eguations
for N coefficients of the polynomials 4%, A™, Wien calculating the Padé-Hermite

form by solving the set of linear equations using the general method, the number of operations
increases in propartion to N° as ¥ increases, and the memory capacity increases in proportion
o N

In this paper we use eguations which generalize the well-known recurrence formuilas between
the numerators and denominators of convergent valuabkle fractions to calculate the Padé~Hermite
forms with values ¥ which successively increase to unity. The required number of operations

increases in proportion te N' and the memory capacity increases in proportion to N.
" .
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suggested to construct a tahle of Pade-Hexrmite approximations of all kinds of types [n,,...,nh] .
The new algorithm c¢alculates only the sequence of approximations on the main diagonal of

the table (n,=...==n,), or of the extra-diagonal approximations nearest to them, These
approximations are usually used for the generalized summation of series. The algorithm from
/3/ is inconvenient for constructing a diagonal seguence of approximations, since, to determing
the Padé-Hermite foxms of the type [Ry...,M], Wwe are obliged to calculate a large number of
forms of the types [rS,...,m’], for which | _

.ilﬂ;ﬁ:i:mh

Tl Tami

._.
L

Equations similar to those we will derive in Sect., 2 are cobtained in /1, 2/,
Note that the construction of Padé-Hermite approximations enables a number of changes tn
be made. Consider, for example, two sets of non-negative integrals: (r,...,n) and (S,...,8),

such that A x
ITEDITH

Yo I Pl

We shall specify a set of polynomials Bi? i={(, {,...,5 of a power no higher than = using ths
relations B (z)f — BW (z)=0o{z*?), p=1, 2,...,k which are equivalent to the system

. .
N—-1=Z sy Tk
pmi
of homogenecus linear egquations for

]
N-Z ritktd

LT .~

unknown coefficients of the polynomials. It is natural to assume that the fractions BYW(z)/-
B®(z) for p=1, 2,...,k are approximations of the functions {*'{z}) (see /6/). The algorithm
for constructing continued fractions was generalized to =similar joint approximations in /7,
8/ when using the Jacebi-Perrcn algorithm.

2, Description of the algorithm,
As is well known /9/, to calculate a diagonal ladder sequence of Padé approximations
(ry=n. or nm=ry+l} it is convenient to transform the function into a continued fraction.

Suppose S, Si,... 1S a sequence of functions, defined by the equations
Se{z)=—1,  Si(z)=p(z), (2.1a)
ISH{I}=SN-I(::}SH-t{D}_SH-I[D}SH-1(-r]- (2.1k}

Then for any N2 we can represent the function ¢ in the form of the continued fraction:
I -2

ed? 2 ze™ zSx(2)

gt eli— Sy (z) °

plz) =

el

where E{”}=Si+1{ﬂ), Ci” =-—S{('D:h

The convergent fraction oot

4 () el 2 rel!

Ai;'-r:l (:} c;ﬂi:l..i.. ':{;”

I

is the Padé approximation [(N—2)/2, (¥—2}/2], if ¥ is even, or [{N—-1)/2, (N-3)/2], if N is odd.
To calculate the numerateors and demoninators of the convergent fractions it is convenient
to use the simple eguations

Mt A=0, A=, 4P =¢(0),

AP (2) =zt A (2)Foah AT (), (2.2)

where p=={, 2,
Note, alsc, that for any N={

43" (2)p(z) —4s" (2) =215y {2). (2:3)

The (2.1} procedure is known as the Viskovatov algorithm /10/ and is a successive
division of the residue of the power series.

We shall now generalize Viskovatov's algorithm to the case of an arbitrary number of
functions f,..., f*. |

suppose {Ax....,Ax) and Sy for N=1, 2,...,k are Pade-Hermite forms of the type Lﬂ,...,ﬂ],
associated with (fiV,..., /"), and the corresponding residual functions; A} = =, =4 =i,

We shall describe a recursive algorithm for calculating .the Padé-Hexrmite forms (Aw e+

(A
) of the type
" Raroatly =1« onm ] (2.4)

— —— e ——
m k—m



and the corresponding residual functions 8, wnere n=1 2,...,m=12,...,%k N=kn+m.
We shall first determine Sy together with some subsidiary functicns Sy, g=1, 2,...,k—2
using recurrence formulas which are used for N=k-+{, 2+2,...:

8p () =S noa (T} T gepg s (0} =Sy (0) Sr—rss (2],
2832 (2) =8 () SH-!I.+! (0) Sy, (0) Sx—rta (&), (2.5)

# &k F % F 4 OB OB O ¥ & & xom o s a oa

A h_i{I:l =Sy h_;(I}SH_;{ﬁ} SH,#—-!(O)SH—!(I)'I
FAEES SH,A—E(I)SH—i{D:’ SH.}-!(D}SN-i{I:l-

Later A}” are constructed together with the subsidiary polynomizls Ag}, g=1,2,...,k—2
using the recurrence formulas

AE} {z)=xA ;:Tn (2} S armirt (0) —Spma () Arﬁf’l}ux (x),
A% (z)mAx; (T)Sw-rts im_Sm{n}A.%’i‘m (2), (2.8)

llllllll

ﬂ::-il-h:{-‘l’) ﬂh(r}Sx-I(ﬂ)ﬂSm-a(ﬂ)Afr’—’z(m).
A,f,”{:r} —AJr w—1 () Sr—1 {0} _SH,J;—.-: (@) A;ﬂt.{m} .
Using (2.3) and (2.6), we can prove, using induction over N, that for all N=k+1 k+2, ..

Y 40 (@) (@)= S ),

p=i

Y A P (@) =28y (), (2.7)

ZA,E’” (2) f# (z}=2"""'Sy ().

=i

The last equation in (2.7) signifies that (dyx'¥,... 4 A"} and Sy satisfy Egs. (1.2) and
(1.3}, which determine the Padé-Hermite form and the resldual function; it is easy to estimat
the powers of the polynomials from {2.6):

n, 1f . p=m

dEg;’i {F} {
n—1, 1£f p>m,

where n is the integer part of the number {(N—-1}/k, m=N-kn.
We can represent system (2.6) in the form of cne formula which genmeralizes the
recurrence formulas for the numerators and denominators of the ¢continued fractions:

¥ {z)= rcn_,A{{}h{x}-l—z chind (@), (2.8)
where =
MNaal Nal
a1l s, m—svaw f] s,
o N R ok 3

i —1

CPE'EI__SHr{-l{U} ]___[ 8;(0) for i=2,3,..., k=2,

Jue N e ki

-‘l'ﬁf:”='—3ma—z ({})

We can rewrite (2,5} in a similar way:

P18 (2) =0k Sns (2) + D s Sy (2). (2.9)
im]
In the special case when k=2, "=y, f"'=—1 Bgs. (2.8) , {2.9) and the last equation in
{2.7) convert, respectively, to {2.2), (2.1) and (2.3).
We can also directly determine the coefficients ﬂylh i={), 1,...,%#—1, apart from an

Unimportant common multiplier, from the equatiocns
h1

chS N_a.(zl'?-z ey laSxei (2} =0 (2). (2.10)
which is equivalent to a set of k-1 homogeneous linear equations that cccur after expanding
the left-hand side of (2.10) in powers 1 and equating the coefficients to zero when x°, .

-t

lIl"
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Egs. (£.8) and (2.9) arae invariant under the subkstitution

Mg Al Se—~deSk. e —dyadmacs {2.41)

where d,, d., ... are arbitfary numbers which differ from zero.
Since A ;-.“ and Sy are determined, apart from a constant common multiplier, the

coefficients c"” :i.n Egs. (2.8) and {2.9) permit an arbitrary transformation of the form
(2.11% prnvided that &;=...=d,=1. It is convenient, for example, to select the nurmalizatinn
constants iy, Grezr..-. Such that after the substitution (2.11) we have r:;:"-i ar 6.5:""-1
Note that the recurrence formulas, similar to {2.8), also hold for the more general
sequence of Padé~Hermite forms of the type [n,+n,..., 2R, Re.tr—i, Rmprtn—1, ..., 0y tn—1]

wiﬂl fi:‘:E’ﬂ nl! FEa gy nh-

3. Examples,
We shall ecall the set of soluticns uf the algebralc eguation

2 A{P]¢P1=ﬂ

pe=i

with respect to the unknown §, where {4, ..., 4d™) is bhe Pade-Hermite form associated with
(1, o ¢ ..., "), an algebraic approximation of the k—1 degree to the function g.
Algebraic approximations have recently been frequently used in physical applications /5, i1,
12/. Henceforth, we shall confine curselves to considering only these approximations,

Using the cbvious eguation [g(z)—@(0)}"*=0(2"-?}, we shall arrange to choose A% ang
Sy when N=12,..  k in the following way:

4 =1 e @1m, sy(o)w] 2RO )T

To evaluate the polynomials A% and the residual functions Sy when Nexk+1 k+2, ... we
will use the recurrence formulas (2.8) and {2.9) with the substitution (2.11). We shall
choose the constants dy,,, dues, ..., - Such that the coefficients e are written in a simpler
form.

We shall present several examples of the coefficients ¢ff fitting into some general
formula which can be used below, for example £o investigate the convergence of Pade-Bermite
approXimations.

In the case of algebraic approximations of the k—{ degree to the function ¢{z)=~={{+z}V
it is easy to prove, by induction, that

o=y, =-({‘), i=1,2 ... k1, S,-_..-.(z}=[ ""':""1"1 ]H. (3.4) -

i

We can often select general formulas faor the ccefficients 55}’ using a numerical experimen
but we cannot strictly prove these formulas due to the awkwardness of the calculations.
For example, for quadratic {k=3) algebraic approximations to the function (1+z)®

can={2atn) (atn),  cilim=--(3n+1) (2utn), (3.24)
Campsm— (2a+n) (2a—n—1), ciahe=(3n+2) (2a—n—1), (3.2b)
c,,,.,.,— (2ag—n—1) {&—n—1), c},f,.i—m—Bn’—En—i, (3.2c)
¢=ii==c=‘:l= e =3 (3.2d)

and for cubic (f=4) approximations to (i+z)e

tinp=(a¥n) (2a+n) (3atn), (3.3a)
= — (3u+n) (Zatn) (3g—n~1), (3.3
téara=(3a+n) 2a—n—1) (3a—n-1), " (3. 3c)
conte=—(a—n—1) (2u—n—1) (3a—n—1), (3,3d)
Comir=—(4n+1) (Za+n) {3atn), (3.3e)

e = (4n+2) (3u+n) (3a—n—1), (3.3£)
-‘.':;.n+.|;""— (4n+3) (2z—n—1) (3a~n—1), (3.3g)
;_-E.i‘ﬂ—- (3:=+n} [ (2n~1) atGni+4nt1], (3.3h a,_

ﬂh-.-p-:’““ {3'51—?1—1} [ (2r+3)a—6n*—8n— —2], (3. 31'_-}



ot — (211} (203t 202+ 2n+1), (3.39}
(i) {13 (¥ (¥} (2} (2]
Cin 4= Cinp21=Cina=¢C Conye="4, Conta=Cings=—0, (3.3k)

n=0 1 2,..
In the special case when ao=1/k for k=3,4 the coeffilcients
to (3.1} after the transformation of (2.11) with the constants

where

(3.2} and (3.3) convert

[{N=1}/A] R=L

dem I T[(ne )"

Heml ol

The coefficients cﬁj for apprnxlmatlnns to the function e* are directly obtained from
(3.2) and (3.3) using the relaticn
I =
(1+2)".
o

&= lim

= N

For quadratic approximations to ¢

(2, —2N,1}), Nwmi(mod3),
Aol edy=] (—4,2N¥,—3), N=2(mod3), (3.4)
(2, =3, ~3), N=0{(mod3),
and for cubic approximaticns to &
({6, —BN, =14 {N—Eu} —N—1}, N=1(mod4),
(—18), N, =3 (N L 4), —4), ~N=2(mod4),
(W, ¥, R Y=} 48, —6N, —8,  —4), N=3(mod4), (3.5)
(—8, —4, —6, —4), N=0{mod 4).
Egs, [3.2Y=-{3.5) generalize the well-known formulas for the coefficients of the represen-

taticon in the form of a2 continued fraction of the functions (1+x)® and e°.

Note that sets of polynomials which satisfy (1.2) for an arbitrary set of expcnents

were examined in /1/. Diagonal gquadratic approximations to the functiens (1+z)™ and ¢
were obtained in general form in /13/.

In quantum mechanics and field theory we often encounter perturbation-theory series,
the terms of which increase factorially /9/., Consider as an example the generalized summation

of series o0
Eljh‘
i

(3.6)
by cnnstru:ting'a sequence of approximations of the form (2.4).
Series (3.6} is asymptotic for the function
< Y
¢(z)= ) -2t 3.7)

. 1—:t

z—+0, |arg #|=0. The guantities w(z} for all z, which do not lie in {0, =), where the
function ¢ has a branch cut, can be calculated by transforming series (3.6) into a continued
fraction /9/.

As z—+z=+il, z=(0, ) the sequence of valuable fractions becomes divergent. In this case
to calculate w{z) it is convenient to use quadratic approximations, since we can use them
to approximate functions which have branch cuts.,
o2 The first few coefficients mﬁ are shown in the table. The approximate values tx(z) to

Z

were calculated using Eg. (1.4}, where 3PF¥=AJ:L. Tc illustrate the convergence of
the approximations the table gives the real and imaginary parts of ~{1).

ds

N | P e | o irevn®|Imenwy| o | o ] &P [Re sty )| Im oy
1 1} - 2 { 12500 | 08614 | 7) 2| 4 % | 0.5625 |=£0.0662
2! 1}~ 1 | 10000 [ =i0000| 8| 3| -1 1 | 0.7867 | =1.0703
31 2 | -1 0 | 20000 | 00000 9! 8 [ —1 4 | 07005 | +1.1288
4 1 1 a | sx'ls 0.0000 (| 10 3 | —3 -1 0.7762 | =1.1495
5| 12 3 | -2 | 00167 | 12219 111} 60 | 5 8 | 08931 | 09903
6| 8| -2 3 | 05833 | £14517 12| 150 | 48 | -5 | 06830 | =11567

The value of the integral (3.7) when z=1
aituated at the point

bypassed,

t=1,

and is

depends on the direction in which the pole is

g

P{1) =P f% df & 2 1=0,6971=1.15574,
a

-The approximation wyw(1) when N=12 differs little from the accurate value ¥(1).
The auther thanks A.I. Sherstyuk for his help and useful advice.
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