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The Stark shifts and the widths of the ground and excited states of the hydrogen

atom are calculated. Two independent calculation methods are used: a summation
of a divergent perturbation-theory series and a 1/x expansion.

1. The Stark effect 1s one of the best known problems in quantum mechanics but
at the same time one of the most difficult {outside the weak-field region) (Refs. 1-10,
for example). For a level with parabolic quantum numbers #,,#,,m in the hydrogen

atom, the perturbation-theory series is'

1
Er’nl Hzm){&} = — )3 E.{“;“am)Fk (1)
2” k = '}‘
Where n=n,+#n,+ |m|+1 is the principal quantum number; €,= — I;
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e, =3(n,—n,)/n,...; F=n'%; and i=m=e¢=1 (the unit of electric field 15 1
a.u. = mc’/ft = 5.142 < 10° V/cm. The recent development of new perturbation-the-
ory methods has made it possible to calculate a large number of perturbation-theory
coefficients*™ €, , up to k = 160 in the case of the ground state.>® Series (1) has a zero
convergence radius, however, and the energy E(#% ) has an essential singularity at
% — 0 and a cut 0« &7 « «w. For this reason, the use of perturbation theory to calcu-
late the shift and width (£ = E, — iI'/2) of atomic levels in a strong eiectric field &
would be impossible without corresponding methods for summing divergent series.

Using Padé approximants, one can determine E, and I' up to # =0.1 (Ref. 6).
The method of complex coordinates® and the Padé-Borel transformation'” make it
possible to sum perturbation-theory series highly accurately, but again only up to
# = 0.1 (and only for the ground state). The results in the literature=* for # ~ (.2
are mutually contradictory (the discrepancy is particularly large for the width '),
Developments in lasers and spectroscopy make it worthwhile to calculate £, and I for
intense fields, # = 0.1, also.

For this purpose, we use Padé-Hermite approximants'' and a 1/» expansion.'
et us consider the case n, = n.=0, |m: =»n — 1, in which the odd orders of the
perturbation theory vanish, and we have &,; < U for all k (i.e., the perturbation-theory
series is a constant-sign series}. The ground level, n = 1, is one such state.

2. Calculation methods. The values of the Padé-Hermite approximants f (#°)
are calculated from the equation P — Qf+ R f~ =0, where P, O, and R are polyno-
mials of #2 of degree ¥, whose coefficients are determined unambiguously from the
perturbation-theory coefficients through the condition

P_QF + RE* = 0(&*3V¥*2)) g ¢ (2)

where K(%?) is series (1). The ordinary Padé approximants are the special case of
(2) with R=0. It is clear that /, (%), in contrast with the Padé approximant [ £/
Q](#?), can have an imaginary part even when the coefficients of the polynomials £,
0. and R are real.”

The other approach, independent from that just described, is based on a 1/
expansion.'” We make use of the fact that at #3» 1 the Bohr model of the atom is
applicabie. In the absence of an electric field, the state (0,0,m) corresponds to a
circular electron orbit, perpendicular to the z axis (the direction of the field #"). When
the field is turned on, the classical orbit shifts along z and changes in radius, remaining
circular. Working from these considerations, and imposing the scaling r—#n’r,
€ =2n"E, F=n"%, we find the equations

(1) (2)

() &

e =9+ — + - 4+, (3}
n '

where
el®) = 3% — 44,
e = W31+ 3V 1—u)V? + (1 -3/ 1~ u)V?— 1], (4)
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<ABLE L Yalue of — €,

'_—_F n=1 n=10
0.1 1.054 84 +i 0.014 54 1.012 97
1.054 836 +i 0.014 538 11t | 1012 976 (1/n)
0.25 | 1.170 + ¢ 0.189 | 1.099 766 + i 0.032 154
1.172 + i 0188 1,100 + ¢ 0.032 (1/n)
10 | 13+ 129 | 1.2851 + i 06739
1.235 + i 1,286 (I/n) 1285178 + i 0.673 874 (1/n)

and % = #(F) 1s that root of the equation

which approaches unity in the limit #—0. The succeeding corrections €*! are calcu-
Jated by means of recurrence relations. Withu =89 or F= F. =272%x377 = 0.2081,
there is a “clash™ of twa classical solutions," at which point €%’ acquires an imagi-

fnary part. Expansion (3) could also be found for other states if the conditions n 1, <n
hold.

The 1/n expansion converges rapidly at » £ 5, while the method of Padé-Hermite
approximants has advantages at small values of #. An important point is that there is
an overlap region in which the two methods agree with each other quite closely (and
at £ <0.1 they agree with the results of other calculations™'?). The 1/# expansion thus
supports the procedure which we have selected for summing divergent perturbation-
theory series. See Table I, where the first line corresponds to the method of Padé-
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FIG. 1. Rea] part of the level energy, €] = 2n°ReE 0% -1 fo;

) . (0,0,n — 1) states, Curve & correspends to a
Me-dimensional 8-function potential. P
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FIG. 2. The function &, (F)}; see Eq. {6).

Hermite approximants, and the second corresponds to other methods (in particula
the 1/n expansion).

3. Figures | and 2 show results calculated on the real and imaginary parts of th
“reduced energy” of a level, ¢, = 2r~E™%" =1 In very strong fields, the Stark shift g

the levels (0,0,# — 1) changes sign. The width of the levels is conveniently written 1
the form

rimrmlgy = rffﬂ1ﬂ:m;‘(&)exp{—ﬂaﬂ aom (B} )
1°%32

where T corresponds to the semiclassical formula,' which is asymptotically exact i
the limit ¥ —0; the second factor includes corrections to the semiclassical results. Fo
the states considered we have

r ™
2 P

~
(el = s — A —
rOenTN@ = Ty & Teeds oy

X (7]

-

and 8, =c¢,F+ 0(F?) in the limit F—0, where ¢, = (33n" -+ 34n + 20)/12n°. A
small va]ues of &, only the factor I' (%), which depends very strongly on the field an
which varies by many orders of magnitude, 15 important 1n (6). Our Cali:..ulatlﬂj
shows, however, that the range of applicability of {7) is quite narrow: & %0.1ln ™
The term with §, would have to be taken into account for stronger fields, especially 1
the case of Rydberg states (n3»1). Correspondingly, the ionization probabilit
[©8n -1 2y is much smaller than the value that follows from semiclassical Estima[‘

(7).

We have considered only states with #, = #, = 0 here. There are no fundamenta
difficulties in generalizing the arguments to arbitrary n,, 72, and m. The results of sucl
calculations will be reported in a2 more detailed publication.
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ince all the €, in (1) are real, the polynomials Z, @, and R found from {2) have only real coefficients. The
energy E. on the other hand, has an imaginary part I'/2, which corresponds to the probability for ioniza-
tion of the level by the electric field, for any % 5£0. This circumstance represents an advantage of the
method of Pade-Hermite approximants over Padé approximants in the Stark-effect problem.

A similar event accurs in other problems, e.g., those of the Yukawa and Hulthén potentials.'?
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