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The Stark shifts and the widths of highly excited (# = 15-30) states of a hydrogen
atom in a strong electric field, which is higher than the classical ionization
threshold of an atom, are calculated. The resulis of the calculations are in

agreement with the experiment.

1. The study of highly excited (Rydberg) states of atoms and molecules has
recently attracted considerable interest. Many important results have been obtained. '
Resonances in the cross section for photoionization of atoms in an electric field have
recently been observed experimentally, first in rubidium and later in hvdrogen.’™*
These resonances, which correspond t0 # ~ 15-30, are rather narrow even at £~ {.
The existence of such (above-the-barrier) resonances is puzzling from the point of
view of the classical ionization model, but it can be explained on the basis of the
Wentzel-Kramers-Brillouin (WKB) method whick can be used to obtain approximate
tquations for the energy £, and for the width® I, Glab er a/.* and Kolosov’ established
a refationship between the resonances observed experimentally in hydrogen and the
Nearly steady Stark states, whose positions and widths were determined through a
Mumerical solution of the Schrédinger equation. Using independent computation
methods,” we calculated complex energies E = E,, — T /2 of these states over a broad
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range of values of n and &, The main results of these calculations are presented below.

2. Let us assume that E“™™ is the energy of the level, ¥ is the electric field
strength, »n,, n, and m are parabolic quantum numbers (m>0), and
n=n;+n, +m+ 1 (we use atomic units, i = m, = ¢ = 1, and the same notation ag
in Ref. 8). We write the results of the calculations in “reduced” variables:

elninam) =IEMMM Fpte p=min, v,=(n+ 1 2)n, (1)

(&£ + v, + v, = 1), which are very useful in the case of Rydberg states (n>1). A
strong-field region corresponds to F2 F., where F. is the ‘““classical ionization thresh-
old” in the electric field (for various states of the hydrogen atom the values of F. lie i
the interval between® 0.130 and 0.383). Of all the »” states of the hydrogen atom in,,
1,, m} with a given principal quantum number », the most stable states are those with
the minimum values of #, and m (as can be seen from the asymptotic expression for
the width ™™™ in the limit F—0). These states are therefore of particular interest

experimentally.

The results of the calculations™ are shown in Fig. 1 (for the Stark shifts we have
€, =2n"Re E""=™ )} and in Fig. 2 (for the “reduced” level widths we have
€; = n°T™®™ ) Figure 1 also shows a limiting curve (7 = ) which is calcufated
from the equation

-V = F : ) -2 =165/
(—e) 1) | 1 Y /€%) (2}
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FIG. 1. Energies of the Stark resonances in the hydrogen atom. Curves—our caleulations; G—Experimantal
data of Ref 4 for # = 6.5 kV/em, + —for & =8.0 kV/cm, and 7—for # = 14.4 kV/cm. The energies of
the states |23, 1, 0) and 22,0, 2) are the same within an error of this plot.
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FIG. 2. Widths of the Stark resenances, e = #*I"*""™™ The parabolic quantum numbers appear next to the
curves (the rest of the notation is the same as in Fig, 1),

(the “Rydberg limit” 1s v, = 1, v, = u = 0; see Ref. 8). In the interval 0.3 « F< 0.8,
the €], versus ¥ dependence is approximately linear. At F = 0.4-0.5 the real part of the
energy changes sign,” and the result is that we have a (quasistationary) level with a
positive energy,

It can be seen in Fig. 2 that the least likely to be ionized (with a fixed # and F )
are the states |# — 1, 0, 0). They are followed by the states i — 2, 0, 1) and then by
the states |n — 3, 0, 2) and in — 2, 1, O). In this case the quantities €7, and especially
€,, are approximately equal to each other for the given pair of states. This approximate
equality can easily be explained by examining the perturbation-theory series:

E "i'":'=1—1 P! Eé"l"im}ﬁ"‘, (3)
2Rt k=0

where £ is the perturbation-theory order,

1Pk(x=,p1, 1/n®), k- even,

€, =<

kP (k4% 1/n*), k- odd,

K=v, —v,=(n,—n,)/n, and P, is a polynomial of degree [k /2] of its arguments.
The states |# =2, 1, 0} and |7 — 3, 0, 2} have the same x = 1 — 3/n and they differ
only in the parameter ¢*, i.e., the terms « 1/#2. On the other hand, for the states of the
type [n —m — 1.0, m) withm =0, 1,2 .. ..<€n the parameter« = 1 — (m + 1)/n, so
that the coefficients ¢, differ even in the terms on the order of 1/x.
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FIG. 3. Experimental spectrum® of the photoionization of a hydrogen atom with # = 8.0 k¥/cm. The
results of calculations for two series of states are aiso shown {the vertex of the tnangle denctes £, and its
base represents the level width I').

Figures 1 and 2 show curves for €’ and ¢, scaled from the experimental data® on
the phototonization of hydrogen atoms (for the fields # = 6.5 and 8.0 kV/cm our
calculations are in agreement with Kolosov's’ calculation which was carried out using
a different method). There is clearly an agreement between theory and expeniment.

The Stark resonance energies which we calculated are compared in Fig. 3 with
the experimental spectrum taken from Ref. 4. We see that the positions of the maxima
correspond to the values of €, and that the width of the peaks is 1 qualitative agree-
ment with €. Similar results were also obtained for other data which were reported in
Refs. 2--5. The theoretical predictions of the Stark rescnances in a strong electric field
are thus 1n agreement with the experimental results, including those for the region
e: >0 (as long as the resonances remain isolated).

3. A remark concerning the 1/n expansion. We restrict the discussion here to the
states with m = (. The integrals contained in the Bohr-Sommerfeld quantization rule
and in the correction on the order of # to this rule'” in this case can be calculated
analytically. We find the following equations for determining the energy and the sepa-

ration constants 2, ,:

1
Bi(~ey V2 f 2y~ —— F(-ey > g (z))=w1,

8n?
Ba(—ey PR f(zq) 4 E F(-ey¥tg (z3)=v,, (4)
Byt =1,

where
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1 3
vitva =1 (p=0), z, ="'15131F/E=-fz =15ﬁ2F/EEsf(f)=F<4 ' 2 , 2;2),

( ZF 3 51)+1F 3 5 .
Z)= —— - s liz) + — L 2;
82) 3 (.4* 4 3 (4'4 z)

and F'=,F| 1s a hypergeometric function. Since the corrections disregarded in (4) are

no larger than about n—*, system (4) is very accurate for Rydberg states. In the limit
F—0 we find the following expressions from (4):

1
e=—1+3kF = —— (17 -3k* + 19 2)F? +, .

R

(5)
1

] K
g, = s (1 +K) +—8—~[3 (I —-k*)+n? ]F-E (1~k%+6n"H)F? +, , .

(P, 1s found through the substitution x = — x, F— — F), consistent with the perturba-
tion-theory expansions in the weak-field region. For an arbitrary F Eqs. (4) can be
solved numencally. As long as F<F. (v,,v,), the solution of €(F) is real and is
consistent with the results of the APE method for ¢, (and therefore supports the
procedure which we chose for summing the diverging perturbation-theory series). At
F> F. the solution becomes complex, allowing this method to be used to calculate not
only the level shift but also the level width.” Apart from purely practical value, this
circumstance s of fundamental importance for the 1/4# expansion. Such calculations
are now being carried out.

4. In weak fields the distance between the adjacent levels, AE, increases linearly
with . On the other hand, for a strong field we have

AE =834, (6)

here* ¢ = 7.51 + 0.02 for the states with n ~20 and energy E approximately equal to
zero (here K is given in ¢cm ™', and # is in kV/cm). This relation can easily be
explained in terms of the 1/n expansion.

dE C1 Ca
y | =c&*", emcg + ~——— +
n

2
E=0 H It

+.... (73

If 1, -+ o and the quantum numbers », and m are on the order of unity, then system
(4) reduces to Eq. (2), from which at £ =0 we find

Fo=F, (1, 0)=(2y/9m)* =0.383. . ., co=(my/2)"*=3.708 ... (8)

(in atomic units) where vy ={I(1/4)/T(3/4)]° If the energy E is measured in cm™*
and & is measured in kV/cm, we have ¢, = 7.54, in approximate agreement with the
eXperimental value.

We wish to thank E. A. Solov'ev for a discussion of the results, for useful re-
marks, and for pointing out to us the work of Kondratovich and Ostrovsky.®
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"Engineering-Physics Institute, Moscow.
DGpecifically, the summation of the divergent series of the Rayleigh-Schréidinger perturbation theory and

the 1/n expansion. These methods are discussed in detail in Refs. & and 9.
¥The quadratic Padé-Hermite approximations were used to sum the perturbation-theory series for the

energy of the levels [see Eq. (5) in Ref. 9]
“In particular, the limiting curve correspanding t0 n = oo CcTOSSES Zero at F=F,=0.3834.., [see Eq,

(B)].
SThe 1/n expansion gives a clear explanation for the cccurrence of the nearly steady,

states. In the limit F—F., there is a clashing between twg classical (#— o0 ) solutions. As a result, they
reach the complex plane. In this case €(F} acquires an 1maginary part, which is attributable to the width of
abve-the-barrier resonances. The solution of e(F) in system (4) has the same type of singularity at the
point F = F. as that in the ather guantum-mechanical problems {in a Yukawa potential,’’ for example).

abave-the-barrer
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