THE 1/n EXPANSTON IN QUANTUM MECHANICS

V. M. Vainberg, V. D. Mur, V. 3. Popov,
A. V. Sergeev, and A. V. Shcheblykin

The classical approximation (£ = n — 1 » =) for the energy =" and
the semiclassical expansion in problems of quantum mechanics are
discussed. A recursive method is proposed for calculating the
quantum corrections of arbitrary order to . this being valid for
both bound and quasistationary states. The generalization of the
method to states with an arbitrary number of nodes and the
possibility of a more general choice of the parameter of the
semiclassical expansion are considered. The method is illustrated
by the example of the Yukawa and "funnel' potentials and for the
Stark effect in the hydrogen atom. These examples demonstrate

the rapid convergence of the 1/n expansion even for small quantum
numbers.

1. An approximate method was recently proposed [1-3] for calculating the energy
esigenvalues in gquantum mechanics; it is valid both in the case of the discrete spectrum
and for virtual and quasistationary levels.* The basic idea is as follows [4-9]. TFor
highly excited (£ = n — 1 » 1) states the effective potential U{r) = V(r) + 2{(8 + 1)/2r?
has a minimum at r = r,. In the zeroth approximation, the energy is E = U(r,), this
corresponding to a classical particle at rest at the bottom of the well. Allowance for
the zero-point vibrations about the point r, and the effects of the anharmonicity in U(r)
‘lead to the 1/n expansion

g=200E =Mt n+e P nt .., (1.1)

where E,; is the energy of the nf level, withn =1, 2, ... the principal quantum number.
For the calculation of the coefficients &™ there is an algorithm convenient for computer
implementation [2].

For the example of the Yukawa, Hulthén, and "funnel” potentials it was shown [1-3] that
the 1/n expansion, theoretically valid in the case of highly excited ("Rydberg," cf. {iol)
states, actually already works for small n (to calculate a level energy to an accuracy of
order 10-3—10"“ it is sufficient to take [2] the first three terms of the series (1.1)).
The convergence of the 1/n expansion is determined by the fact that the amplitude of the
quantum fluctuations of the particle arcund tr = r, is of order n"2, i.e., arbitrarily
small as n > », We illustrate this by the example of the Coulomb potential, V(r) = —r~
The level with L = n — 1 has the wave function [1l]

1

— (2r)" eim — Wy-Ve g~Pi/2 [ o ( : )]
xﬂ-r ti—1 [r} n‘.rH-] [{2?!- _ 1)!]"}’; (T[rﬂ } & 1 '1_ Sn,h ‘+' O -E' , (1-2)
where y(r}=rR(r), r=r,(1+tpn~*), and r, = n? (the wave functions withnr =no — & — 1 >0

correspond in the region r ~ r, to excited oscillator states).

In the present paper, we present a method of recursion relations, which make it
possible to calculate the corrections &® of arbitrary order k. First (in Secs. 2 and 3)
we shall consider nodeless states, for which the methed is simplest. The generalization
to the case of arbitrary n and & is given in Sec. 4. ¥Finally, we demonstrate the
convergence of the 1/n expansion (Sec. 5) and consider some physical examples (Sec. 6).

*In the usual approach (numerical solution of the Schrddinger equation) this case encounters

well-known difficulties related to the exponential growth of the Gamow wave function as
r + mi

Institute of Theoretical and Experimental Physics. Translated from Teoreticheskaya i
Matematicheskaya Fizika, Vol. 74, No. 3, pp. 399-411, March, 1988. Original article sub-
mitted July 15, 1986,

0040-5779/88/7403-0269$12.50 © 1988 Plenum Publishing Corporation 269



2. Recursion Relations. To calculate the corrections e, we use logarithmic

perturbation theory [12-14]., Assuming £ = n — 1 * 1, we go over from the Schrddinger
equation to the nonlinear Riccati equation
1 { dy 2) 2 ( 1y ., e - ~
n (dp Y _‘TU(I)—]— 1—?)1‘ vﬂ._..'[}, (2‘1)

whera y

fp lny, v(z)=/(z)z,

v=np, :;—-pr=:rﬂ—n‘”’p o (2.2)
and we consider the screened Coulomb potential¥*
Viry=—r""f(ur} (2.3)

(R=m==¢=]}. It can be seen from (1.2) that Ar/r, - 0 and the variable p remains constant
in the limit n » «; this is the justification of the substitution (2.2). Substituting
in (2.1) the expansions

o ) oD

Y= Z =" (0), v{r)= Z n-kie u{k;x") of, T rt=u," Z nr{(— Y (k + 1) (o/x,)F, (2.4)

k==0) == k=0

we arrive at the chain of equations

"
d j - 1 ¥ Y fe
- dg::-k - Zmyk-i + +2(.uz L ettornss 4 a,ph* 4 =0, (2.5)

=0

where

2 . - T
= TR oy (R (e 4 3) g™, by == (— 1)¥ (ke 1 1) 25,

and x, = x,(v) is determined from the condition
2 {zy=—v (2.6)

(or v = xf — x2f"; cf. [1]). Thus, X, is the point of equilibrium in the effective
potential U(r).

The solution of Egq. (2.5) has the form of a polynomial of degree k + 1 and & definite
parity:
=

¥ (0) = Z A grn-ed, (2.7)

J=u

where [x} is the integral part of the number ». Note that the expansion of the “energy" ¢

is with respect to not only integral powers 1/n but also other quantities — half-integral
powers. This follows directly from the relations
y{(—x, —a~"y=—y{z, n™"), e(—n"")=e(n"). {2.8)
We calculate the coefficients A, raising the index j successively:
’ F—1 _ 1 —1
E.if]___ 5 [ﬂ'k -+ Z A:{}k—.I}AgHJ , Aili]:_ H-H_EE [b}: — (k + I}A:;H + 9 2 Alik_I}AEl”] (2'9)
=] i=X .
and for j 2 2
A - F—1 §
oy __ b 3 __ oAl (K=} (0]
AP =5 Tk 4 3~ 2)4ff) ;; A5 4 ] (2.10)

*This formula encompasses many physically important examples. Thus, f(x) = exp{—x) and
x/(eX — 1) correspond to the Yukawa and Hulthén potentials, which are frequently used in
nuclear physics, f{x) = 1 — %2 corresponds to the "funnel'" potential, which is used to
calculate the spectra of quarkonium and multiquark systems [15,16}, etc.
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For k = 0 we have A,V=q@, y,=wp, where

=z, [k {2} /g{z) 1" (2.11)
and, by definition,
g(xy=f—zf, h(z)=f-zf—2". (2.12)
The first coefficients in (l.1) are
2= ([ )~ Fegi-2fg, eV—gthi—g (2.13)

(see [2] for the formula for &*), the values of the funetions f, g, and h being taken
at the point x = x,. Using the recursion relations (2.10) and considering even k = 2q —
= 2, 4, ... we obtain in the last step the correction to the energy

kja—1
ﬂf—l—Et'.l (2i+l)
E{qj p— "'.,J'E [ '”12 Z AHIE—I i+l_-1 ] . (2 . l‘ﬁ'}

i=0

(thus, &"'=v{4,”—[4,"Y]*}). These equations are very convenient for computer calculations
(all the numerical calculations in {1-3] and the present work were made using them).

Note that the quantity w that occurs above has a2 simple physical meaning — it is the
frequency of small vibrations about the egquilibrium point x,(v). Indeed, y,(p) =
corresponds in an cbvious manner to the oscillator wave function: x,(p) = constrexp{—3iwp?).

3. The l/n Expansion in the Problem of the Stark Effect. We now use the 1/n expan-
zion to caliculate quasistaticnary states in a system that does not possess spherical

symmetry. For the hydrogen atom in a homogeneous electric field & , the wvariables
separate:

e {13 = (EN) "0 (E) %2{M) exp (imep),

where { = r + 2z, n=r — z; n,, n,, m are parabolic quantum numbers, n = n, + n, + Iml
+ 1. The functiems x, and x, satisfy one-dimensional Schrddinger equations [11], in
which E/4 plays the part of an energy, and the potentials are U,{E) and U,{n):

, ﬁ1 m—1 A B,  mi—1 1
Ul(‘z} + 852 + 8 (%-E, UE(TI)___ 21,.' '_'_ 8!]2 8 %ﬂ.' (3‘1)
We consider the nodeless states with n;, = n, = Q, Im[ = n — 1, for which there are no

"radial" excitations {(with respect to the wariables £ and n). In the limit n - «, the
classical equilibrium point {(£,, n,) and the energy E are determined from the system of
equations

d d y 1
dE Uy (B) = d'q U, =0, Ui(Ge)=U:(n)= [E,  pripa=t (3.2)

(Bl and B, are separation constants).

The direct analysis of this system is rather complicated. We simplify it by using
the fact that for n » 1 Bohr’s model of the atom is valid. In the absence of an external
electric field, the state (0, 0, m) corresponds to a circular orbit of the electron
perpendicular to the 2z axis. Since the force F=-—& is perpendicular to the velocity,
application of an electric field displaces the orbit and changes its radius, but the orbit
remains circular. Hence

1
&E==—zr3, proi=vp~t, E= 5 12 1 + &z, pp=m=n, p=(>*—2)" (3.3)

(the first two equations correspond to the condition of equilibrium of the ferces that act
on the electron in its rest frame). Making the scaling

r—-nr, v—vfn, e=2nE, F=n'& {3.4)

and setting r = u~?, we arrive at the equation

ui(i_u)'ﬁmFT (3.5}

and
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g =3u*—4u®, eV=u’[ (1+3¥1—u)" "+ {1-3¥1—u)"*—2] (3.6)
{(u—~+1as F » 0).

We obtain the following corrections e'*' by means of recursion relations. After the
scale transformation (3.4) we cobtain the equations
a2 nt 4 1—2/n
xl—P‘;( ﬁl /

dxt T 72 F:-ﬂ) II(I}zou

(3.7)

dﬂxﬂ | _;i 4[33 1—2n _a
A + Fy ) 1)

{(§=n’z, n=nr’y). Setting with allowance for (1.2) z—qm(1+pn ") and y=y{i+aon "} (so that
{p?>~{g*>~1 as n + =), we obtain

L S “*"ﬂ(g+ 4Py 1_2f”—1«*$), APy _ o2 ﬂyﬂ(g+ 4 1*2’”+Fy), 1,8)

dp x® do 2 4 iy
where q:al{p}m—u%ln Y1+ Po (O} = jﬁ Iny,. We expand the solution of this system in powers of
the small parameter n'%:
_ it e () . /o () _ (kY% - W * (1=1,2 (3.9)
‘Pl“‘ n=iRe () Pe— n~¥ipy(0), &= g®in™%,  Py== Bi''n (i ' 2) .

Substituting these series in (3.8), we obtain in the lowest approximation Egqs. (3.5) and
(3.6). From the condition of vanishing of the coefficient of n™%/2 we arrive at the
chain of equations

Ex
d{p“‘:' k ) | k [ I
d ZEPW-I} P =aiprez 4 b0 4 ¢V +(— D) Z By pr-atsz, (3.10)
p 2
where
L k+3 : . ko1
o — (— 1).a+1( I 2B ), B =(— 1);:( +z m)r
k
r.‘:ilr]__ 1 +é— 1} (-’T:i} gl{k+2)/2) 4- ﬂ*ﬂﬁ{{hﬂh J

and a similar chain for ¢:* (o), in which E$h=%"_1“+%i Jﬁm) etc. The solutions have

the form of the polynomials

R+1 lr+1
(k}{p}__ 2 Al;k] k+1-2] “]' —_ .,Z B{'fl'ﬂhkzj
P imm |,

where 4,=w, and B,""=w, We finally arrive at the recursion relations

k—1 b — ]

~ 1 _
G0 __ [ m+2 A% HAE'!}}’ AP e — [h””-{h-{-i)ﬂ“’ ZA{ EIAEI}]
1
- . = (3.11)
1
(%) _ k pid) _ £ (F=t) 4 (1)
. A 2o | (— DBz — (ke + 3 — 27) 4" +ZZ& 4]

=3 i==0

(1 < j s (k+ 1)/2) and similar relations for B, If k = 2q — 2 is even, then the terms
in (3.10) that do not contain the variables p and ¢ determine the correction of order n~4
in {(1.1) and in the corresponding expansion for the separation constant

4 @ i

q) — }I’ H \ —
© Tolfo (Zo + Yo) (ola + 2 ? ! Talfo {To — Ya)

where for q = (k + 2)}/2 = 2, 3,

(y?dq— 72 By, (3.12)
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ki2—1

A= Aln— 3 AGED 4G, (3.13)
F=0)
and there is a similar formula for E This completes the calculation of the ceefficient

g in the 1/n expansion.

It remains for us to give the definition of some of the quantities that occur in the
previous equations?®: -

ro= e (1= VT=3), =y (1 + VT=2),

u?

o, =(1+31)*2(1+1), e.=(1-30)"2(1—1), PBN=1/-1/,(t — 31, (3.14)
By =—p,"M=" {1 [(1+1) {(1+31) "= (i—T1) (1—31) "—4r],

where 1T = v1 — u., The variable t is scomewhat more convenienk than u, and the substitution
T » —T corresponds to the index interchange 1 2 2 in Egs. {3.7). At the same time, the
formulas simplify; thus, Eq. (3.5) takes the form t{(1 — t2?)}" = F.

Hitherto we have assumed n, = n, = 0. Expansions of the type (l1.1) can also be
obtained for other states if n,, n, « n. For example, the first-order correction is

M= {1—1%*[ (2n,+1) (1+37) "+ {2n,+1) (1—31) "—2], (3.15)
and for spherically symmetric potentials
e V={ (2n—-2I—1) {(hig)"—1]} 2 (3.16)

(cf, (2.13)). It is cenvenient to calculate ™ for k 2 2 for states with arbitrary
quantum numbers in a somewhat different way.

4. The 1/n Expansion for States with Nodes. We obtain the recursion relation for

the components (,'"™ of the wave Function in the basis of eigenfunctions of the harmonic
oscillator. As expansion parameter, we choose in place of 1i/m=(2 4+ 1)"! the more
general quantity 1/A, and

H{I+H1)=A+AA+B, (4.1)
where A and B are certain constants.”

We make a linear change of the variable g=pr—=z,+A"p and write the Schridinger
equation in the form

1 g 1 A B £
[ 2A dpe +""1”(I}‘2?(1+ AT Ag)-l- 21,2]1—*0, (4.2)

where e=2AE, v=A*x, and v(x) and x, are determined in the same way as in Sec. Z.

Substituting in (4.1} the expansions (2.4) for v(x) and x™?, we obtain the equation

{: ; a2 _ 4 2 P —]—ZV{”{P)ﬁ'”ﬂ W]I:Bs (4.2a)

where

A A -1
T/ (k) {p) =—1g{2ﬂhpk+z+jj’zﬂ bhph__l_ijEBbh-—iph-ii W= ;‘\?2 + 2 ¢ T

and w, ay, and by are determined by the same formulas as in Sec. 2.

Ab,, (4.2b)

In the limit A = =, (4.2a) reduces to the equation for a harmonic oscillator with
frequency w. In this limit, W=W%=(n,+',)o, where np, = n — & = 1 is the number of
nodes of the radial wave Function; this number is assumed to be fixed.

~*Note that w,; and w, are the frequencies of small vibrations about the equilibrium points
X, and y, in the effective potentials (3.1).

TThis relation is satlsfied for example, in the cases A=t +c (A=1— 2¢, B=¢?2 — c)
and A = [8(g + 1)1Z (4 = B = 0).
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) To solve (4.2a) by perturbation theory, we expand W and x in powers of the parameter
ﬁ_ -

—_ AR, e Y AN, (4.3)

Substituting the expansions (4.3) in (4.2) and equating to zero the cuefflclents of
aqual powers of A2, we obtain an inhomogeneous equation for determining %™

(~ g T Wf“’)xmszWf-‘-'}—v<m:~xw-~f-. (e
i=1

We shall seek the correction te the wave function in the form of an expansion with
respect to the complete system of eigenfunctions Xp of the harmonic oscillator:

y =3 % (4.5)
&

(the normalization condition is C¥ =4, n.» C’m_.ﬁm,}.

We describe the algorithm for finding W™ and C,"™. To find the coefficients ", we
write Eq. (4.4) in matrix form in the basis {xp}

K o0
(p—n,) WC{H}_Z Z (Bpg¥ ™ — VE;) Géh._i}* o (4.6)

te=1 =0
where by Fﬁ; we dencote the matrix elements of the operator V™

The right-hand side of Eq. (4.6) contains Lhe already known quantities W™, Cﬁj with
k’ <« k and the matrix elements Iﬂﬂ For i & k, which can be expressed in accordance with
(4.2b) in terms of the matrix elements of the coordinate operator. To determine the
unknown quantity W%, which occurs on the right-hand side of (4.6), we use the equation
obtained from (4.6) for p = n,

k—31 oo

WV e 3 3 o 0= V€8 =0 (.7
i=0 g=1
With allowance for (4.7), W™ can be expressed in terms of the coefficients W' and (/)" of
lower order. Since V{“ =0 under the condition |p — q| » i + 2, the sum over in {4.6)

and (4.7) is finite. By induction, using (4.6), we can also show that C,*'=0 far

}p — nr1 > 3k, and therefore the sum (4.5) is also finite. Thus, the perturbation-theory
corrections of any order can be expressed 1n the form of analytic expressions containing
a finite number of terms.

Nuta that Eq. (&4.2) goes over after simultaneous replacement of the parameter AT
by —A~ 5 and x(p) by x(—p) into an equation equivalent to (4.2), this being obtained frnm
(4.2) after the substitution p + —p. Therefore, on the substitution A~ Z > —A"2 the wave
function x(p) goes over into y(— p}, while the eigenvalue W remains unchanged, i.e., is an
even function of the parameter A~ z, Therefore, the expansion c¢f the energy contains only
even powers of A:

. ZZ ZUOAK. (4.8)

k=0
where EW=—viq_,, §V=2vWO424b, M =2vWk-2} for k z 2.

5. Turning to definite examples, we begin with the Yukawa potential, for which
f{x) = exp(—x) in (2.3). In this case [3]

gV =(z*—1)e*, wv=(tz)e™, &V=—(x +1]2[1— (1 Ii i )jh] e 2%,
(5.1)

E{E}:( 1 —

] |
I:L:[" »1) [E" (3 + dx — r9) (‘1-{- Vel 4o —gh)h —
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TABLE 1

v f==3 I==10 =10
0,0 —0,243206 —{.230412 —~0,220041
TO e —0,2304119 —-0,225542
Yer —{.036872 —0,01 4040 —0,00507
- 03687 1 —0,0140396 —0,005067 3
1,25 0,10917—i0.12189 0.1541—:0,1343 0.§714—i0,1377
TO HIE 0,154112-i0,134273 0,171423—-4C,1 37681
Note. Here, ey = In2Eng, Eng is the energy of the level & = n — 1; the
value v, = 0.735 758... corresponds to e%=0,i.e., entry into the contin-
uum of the states with n + =,
TABLE 2
] nr={_l 11?_=1 ﬂ.?=2 ﬂ.r=3 nrss'i.
1 220.2 1125 67,89 45,19 3217
2 91,34 08,11 40,05 2917 22,161
J 49,831 35,3804 26,3507 20,3422 18,1505
4 31,3436 23.79911 18, 646522 14 98080 12.28G14
it 21,5246 17085130 13,883520 11,480704 b.651169
b 1559109 12871464 10736148 S.0828a2 7.778558
7 1194453 10,03975% &,048708 7.361194 6,401072
& 9,396001 3049286 6.96G7 264 6,08a773 6,308781
Y 7.584126 £.597033 5, 787093 5, 114915 4531345
10 B.250053 a.aU0a0h 1 4 683140 4,398925 303274
11 5.23%411 4 663419 4, 175444 3.758824 3400377
12 4,450497 4 000992 3611188 3,274549 2981971
13 3,835226 3.470302 3,153976 2878120 2.636219
14 .330024 3,3086(1 2710380 2,049519 2.347238
15 2928314 2.682716 2466087 2274117 2.103255

Note. We have given the critical values of the screening parameters
Hopln, £) for the Yukawa potential multiplied by 10%; n,=n — L — 1.

%{:ﬂ“ 4 19,52° — 487% — 10223 + H4a? + 2106x + 198)] e,

and the following coefficients ™ (v) can be readily calculated on a computer if the
recursion relations from Sec. 2 are used,

Note that for % = 1 we have £®=0 and v = 2e”' = 0.735758..., this corresponding to
2 Meritical™ value of the parameter v for n » «. For x = xi = (1 + VE)2, v = vy =
0.830 062... there is a "collision" of the two classical solutions, after which the
equilibrivm point x, = ur, enters the complex plane, and ¢ acquires an imaginary part.
Such a solution obviously loses its meaning in classical mechanics, but in the quantum
case it determines the position and width of the Breit-—Wigner resonances with 2 ~n » 1
(for v » vy} (a similar phenomenon occurs for other screened potentials (2.3), for
example, for the Hulthén potential [2]).

With increasing k, the coefficients in {1.1) initially decrease, but then, for
k 2 10, begin to increase rapidly. Already five or six terms of the 1/n expansion deter-
mine the energy to accuracy 107°, although overall the series (1.1) is evidently only
asymptotic (for more details, see [2]).
in which we give the "reduced" energy tnpy = 2n®Epg for several characteristic values of
the screening parameter u {Yukawa potential). The upper row for given % and v = n?p
corresponds to summation of the (divergent) perturbation-theory series [17], and the
lower row corresponds to the 1/n expansion. The agreement between the two methods is
very good.

A question of independent interest is the calculation of the critical screening
parameter, at which the level energy becomes zero. By analogy with (4.8), we shall seek
Bor in the form of the expansion [18]

For the results of the calculations, see Table 1,
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TABLE 3

F=i25
L
=l =5

I 11575 + iy 1047 1111152 + i4.548436(-2)
2 1,1724 + {01367 1.111958 + i4,833566 (—2)

o 11768 + 10,1639 11586 + (a4 917573{-2)
10 1,1745 + {04702 1,111534 + 4916391 (—2)
12 1,1741 + i3 AT06 1111534 + i4, 916261 (-2}
14 1,738 + 01708 1114534 + i4 916228(--2)
16 1.1737 + 10,1708 {,111535 + £4.916222(-2)
18 the same the same

F=1,)
L
=1 n=—3

1 1.26141 + i4,28643 1,282088 + {7 440322(— 1)
2 1,23175 + i1,28846 1,282600 + 7 449273 (- 1)
3 1,23502 + i1,28587 1,282807 + i7,449231 (1)
10} 1,23511 + il 28577 TG e
12 1,23510 + §1 28577 »  »
14 1,23510 + §1 28577 TR
16 the same BB

18 BB % B S

b

Note. We have given (with sign reverse) the values of tha diagonal Padé
approximants {L/L] {1/n). The data relate to the levals |, 9, n — 1>,
where n is the prinecipal quantum number.

=

Per{n, )= A2y, = 2 VD Ak (5.2)

A ==)

x
a - - — d —_— .h-
From the condition &= E EMA™* =0 (for v = vop) we find vWemv,(n—>o0)=2¢1, and +*' for
k=0

kK 2 1 can be expressed in terms of the ccefficients ) with i < k if one solves the

equation, linear in +¥, which follows from the condition g =10,

We give the fiqal formula, which includes six terms of the expansion (5.2) in the
case A = [e(2 + 1)]2:

b (127882 — 3 385) A3 + F%'Eﬁ_ﬂ (645 792 720p* — 28B4 523 960B2 + 17 520 481) A~ —

217/233

B (32292401 104p* — 21 674608 440B% 4+ 3494 487 TA3) A5 + . ]

239/23152 {5.3)

T

] o

where R = n — &t —

Note that by differentiating (4.8) term by term with respect to the variable v for
V T Veor We can also expand in a series the derivative of the energy with respect to y at
H = Hgy, 1.e., the slope of the level when it enters the continuum:

L gl =er(1—3.29mAt 4. (5.4)

A g,

The states with £ = n — 1 have nodeless radial functions cencentrated in the neigh-
borhood of the minimum of the effective potential. TFor them, the quantum corrections v
take the values with the smallest modulus, and the sum of the five terms of the series
(5.2) approximates per(n, %) for all & > 0 with a relative error less than 0.03%Z. The
values of these partial sums are given in the second column of Table 2. TFor ny 2 1, the
partial sums of the series (5.3) oscillate around the limiting value and for % % Np NO
longer give a satisfactory approximation to Hops although the Padé approximants appreciably
improve the convergence of the approximations. In the last four columns of Table 2 we give
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the values of Wy, obtained using the Padé approximants [5/4] and [5/5] (only their common
decimal places are given; 1in fact for & > 7 the accuracy of the calculations is an order
of magnitude higher than is indicated in Table 2). TFor the n and ¢ for which comparison
with the previcus calculations is possible the obtained values of ., agree with the
results of {1%-22], and for £ = n — 1 they agree with those of [17].

The "funnel" potential V(r} = —r~! + gr is often used to describe the spectra of
multiquark systems [15,16,23]. 1In this case p = g%, vix) = f{x)/x = x"! — %, and the
coefficients &' can be expressed in terms of elementary functions [2]. The results
of calculation are given in [3] (the same values of the parameters as were used in [16]
for four-quark states were taken}. At the same time, use was made of the fact that the

scaling transformation r » p = or in the Schrddinger equation reduces the "funnel" potential
to the standard form [15]

@ L+ 1) B

from which the eigenvalues [ = Cng(l), where X is the Coulomb parameter, are determined.
The calculations show that when 2 2 3 already three terms of the 1/n expansion ensure an
accuracy of order 107" in the energy. At the same time, the l/n expansion converges more
rapidly the larger n and L, whereas the accuracy of the numerical solution cof the
Schrodinger equation decreases with increasing &.

As a last example, we consider the Stark effect in the hydrogen atom. Using the
recursion relations of Sec. 3, we calculated the coefficients ¢™, after which we summed
the 1/n expansiocn by means of Padé approximants [L/L)(i/n), see (24]. This made it
pessible to calculate the "reduced" energy ep = 2n%{e, — iI'/2) of the quasistationary
states into which the states |n,n,m> of the discrete spectrum pass when an electric field &
is applied. To obtain five stable figures in £, it was sufficient to take L ~ 15, i.e.,
about 30 terms of the 1/n expansion (3.9} (see Table 3, which illustrates the convergence
of the 1/n expansion for the energy of the states |0, 0, n — 1>}). Note that the 1/n
expansicn is particularly helpful in the region of strong fields (F=n'&=20.25) and for
Rydberg (n » 1) states (for more detail, see [25]).

For the other examples (Yukawa and '"funnel" potentials) the convergence of the 1/n
expansiocn is similar. It would be interesting to obtain thecoretical estimates of the

convergence (or asymptoticity) of the expansion (1.1). We hope to return to this guestion
in the future.

6. Thus, the 1/n expansion is an effective approximate method of calculating energy
eigenvalues. However, it does not work near the point of collision of classical scolutions
(v = v&) since the coefficients '™ have there a singularity, and for k 2 2 they become
infinite.® For a different choice of the expansion parameter in (4.8), we shall have

1 1 A1 (A-+=1){4d 4+ N+ 48

N n 1""1597__+ Bns T (6.1)

1N

with ¢™'=¢"", and & and "' with k 2 1 differ. All the ¢ have a singularity at v = vg,
while the singularity of & is at the point 9%, = (A/n)’vy, which for finite n is displaced
relative to vg. This m§kas it possible to sum the series (4.8) at v = vp. Thus,

choosing A = [2(2 + 1)]2, we obtain for the Yukawa potential

[

— 0.00181, I =1,
(6.1 —i-0.3)-107, ]—3,
E=\n 47— i.022).10%, 1—4
(2,219 — i.0.034)-407%, { =14

(here 2 = n — 1, v = v, = 0.839%..,). This simple device makes it possible to use the
1/n expansion in the region v * vy as well.

*This follows from the recursion relations (2.9)-(2.14) if one bears in mind that in the
limit v » vy the vibration frequency w ~ (ve — v)Z > 0, In the case of the Stark effect,
the collision point corresponds to a field F = Fy = 2'%-37° = 0,2081; at the same time,
the frequency w, remains finite while w, « (Fy = F)1'% - (.
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